Quantifying the Impact of Signal-to-background Ratios on Surgical Discrimination of Fluorescent Lesions

van Beurden F, van Willigen DM, Vojnovic B et al (2020) Multi-wavelength fluorescence in image-guided surgery, clinical feasibility and future perspectives. Mol Imaging 19:1536012120962333

PubMed  PubMed Central  Google Scholar 

Boni L, David G, Mangano A et al (2015) Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc 29:2046–2055

PubMed  Article  Google Scholar 

Rossi EC, Ivanova A, Boggess JF (2012) Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study. Gynecol Oncol 124:78–82

PubMed  Article  Google Scholar 

van der Vorst JR, Schaafsma BE, Verbeek FP et al (2013) Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncol 49:15–19

PubMed  Article  Google Scholar 

Lavazza M, Liu X, Wu C et al (2016) Indocyanine green-enhanced fluorescence for assessing parathyroid perfusion during thyroidectomy. Gland Surg 5:512

PubMed  PubMed Central  Article  Google Scholar 

De Nardi P, Elmore U, Maggi G et al (2020) Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc 34:53–60

PubMed  Article  Google Scholar 

Aslim EJ, Lee FJ, Gan VHL (2018) The utility of intraoperative near infrared fluorescence (NIR) imaging with indocyanine green (ICG) for the assessment of kidney allograft perfusion. Journal of Transplantation 2018. https://doi.org/10.1155/2018/6703056

Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA (2014) The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc 28:1695–1702

PubMed  Article  Google Scholar 

Achterberg FB, Mulder BGS, Meijer RP et al (2020) Real-time surgical margin assessment using ICG-fluorescence during laparoscopic and robot-assisted resections of colorectal liver metastases. Annals of Translational Medicine 8(21). https://doi.org/10.21037/atm-20-1999

Ishizawa T, Fukushima N, Shibahara J et al (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115:2491–2504

PubMed  Article  Google Scholar 

Burnier P, Niddam J, Bosc R, Hersant B, Meningaud J-P (2017) Indocyanine green applications in plastic surgery: a review of the literature. J Plast Reconstr Aesthet Surg 70:814–827

PubMed  Article  Google Scholar 

Cacciamani GE, Shakir A, Tafuri A et al (2020) Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol 38:883–896

PubMed  Article  Google Scholar 

Zapardiel I, Alvarez J, Barahona M et al (2021) Utility of intraoperative fluorescence imaging in gynecologic surgery: systematic review and consensus statement. Ann Surg Oncol 28:3266–3278

PubMed  Article  Google Scholar 

Handgraaf HJ, Verbeek FP, Tummers QR et al (2014) Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art. Gynecol Oncol 135:606–613

PubMed  Article  Google Scholar 

Marano A, Priora F, Lenti LM, Ravazzoni F, Quarati R, Spinoglio G (2013) Application of fluorescence in robotic general surgery: review of the literature and state of the art. World J Surg 37:2800–2811

PubMed  Article  Google Scholar 

van Keulen S, Nishio N, Fakurnejad S et al (2019) The clinical application of fluorescence-guided surgery in head and neck cancer. J Nucl Med 60:758–763

PubMed  PubMed Central  Article  Google Scholar 

Daskalaki D, Aguilera F, Patton K, Giulianotti PC (2015) Fluorescence in robotic surgery. J Surg Oncol 112:250–256

PubMed  Article  Google Scholar 

Pathak RA, Hemal AK (2019) Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature. Int Urol Nephrol 51:765–771

PubMed  Article  Google Scholar 

van Manen L, Handgraaf HJ, Diana M et al (2018) A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol 118:283–300

PubMed  PubMed Central  Article  Google Scholar 

Tewari T, Mukherjee S (2010) Microdosing: concept, application and relevance. Perspect Clin Res 1:61

PubMed  PubMed Central  Google Scholar 

KleinJan GH, Bunschoten A, van den Berg NS et al (2016) Fluorescence guided surgery and tracer-dose, fact or fiction? Eur J Nucl Med Mol Imaging 43:1857–1867. https://doi.org/10.1007/s00259-016-3372-y

Meershoek P, Buckle T, van Oosterom MN, KleinJan GH, van der Poel HG, van Leeuwen FW (2020) Can intraoperative fluorescence imaging identify all lesions while the road map created by preoperative nuclear imaging is masked? J Nucl Med 61:834–841

CAS  PubMed  Article  Google Scholar 

Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL (2019) Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol 20:e354–e367

CAS  PubMed  Article  Google Scholar 

Keereweer S, Kerrebijn JD, Van Driel PB et al (2011) Optical image-guided surgery—where do we stand? Mol Imag Biol 13:199–207

Article  Google Scholar 

Jiang JX, Keating JJ, De Jesus EM et al (2015) Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nucl Med Mol Imaging 5:390

PubMed  PubMed Central  Google Scholar 

Cho SS, Jeon J, Buch L et al (2018) Intraoperative near-infrared imaging with receptor-specific versus passive delivery of fluorescent agents in pituitary adenomas. J Neurosurg 131:1974–1984

PubMed  Article  Google Scholar 

Xia X, Gai Y, Feng H et al (2020) Florescence Imaging Lung Cancer with a Small Molecule MHI-148. J Fluoresc 30:1523–1530

CAS  PubMed  Article  Google Scholar 

Hensbergen AW, Buckle T, van Willigen DM et al (2020) Hybrid tracers based on cyanine backbones targeting prostate-specific membrane antigen: tuning pharmacokinetic properties and exploring dye–protein interaction. J Nucl Med 61:234–241

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rood MT, Oikonomou M, Buckle T et al (2014) An activatable, polarity dependent, dual-luminescent imaging agent with a long luminescence lifetime. Chem Commun 50:9733–9736

CAS  Article  Google Scholar 

Hung AJ, Chen J, Jarc A, Hatcher D, Djaladat H, Gill IS (2018) Development and validation of objective performance metrics for robot-assisted radical prostatectomy: a pilot study. J Urol 199:296–304

PubMed  Article  Google Scholar 

Judkins TN, Oleynikov D, Stergiou N (2009) Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg Endosc 23:590–597

PubMed  Article  Google Scholar 

Hung AJ, Chen J, Che Z et al (2018) Utilizing machine learning and automated performance metrics to evaluate robot-assisted radical prostatectomy performance and predict outcomes. J Endourol 32:438–444

PubMed  Article  Google Scholar 

Perrenot C, Perez M, Tran N et al (2012) The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg Endosc 26:2587–2593

PubMed  Article  Google Scholar 

Bric JD, Lumbard DC, Frelich MJ, Gould JC (2016) Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc 30:2169–2178

PubMed  Article  Google Scholar 

Chan J, Pangal DJ, Cardinal T et al (2021) A systematic review of virtual reality for the assessment of technical skills in neurosurgery. Neurosurg Focus 51:E15

PubMed  Article  Google Scholar 

Azargoshasb S, van Alphen S, Slof LJ et al (2021) The Click-On gamma probe, a second-generation tethered robotic gamma probe that improves dexterity and surgical decision-making. Eur J Nucl Med Mol Imaging 48(13):4142–4151. https://doi.org/10.1007/s00259-021-05387-z

van Oosterom MN, den Houting DA, van de Velde CJ, van Leeuwen FW (2018) Navigating surgical fluorescence cameras using near-infrared optical tracking. J Biomed Opt 23:056003

Google Scholar 

Spencer F (1978) Teaching and measuring surgical techniques: the technical evaluation of competence. Bull Am Coll Surg 63:9–12

Google Scholar 

Ghasemloonia A, Maddahi Y, Zareinia K, Lama S, Dort JC, Sutherland GR (2017) Surgical skill assessment using motion quality and smoothness. J Surg Educ 74:295–305

PubMed  Article  Google Scholar 

Brunyé TT, Gardony AL, Holmes A, Taylor HA (2018) Spatial decision dynamics during wayfinding: Intersections prompt the decision-making process. Cogn Res: Princ Implications 3:1–19

Article  Google Scholar 

Ganni S, Botden SM, Chmarra M, Li M, Goossens RH, Jakimowicz JJ (2020) Validation of Motion Tracking Software for Evaluation of Surgical Performance in Laparoscopic Cholecystectomy. J Med Syst 44:1–5

Article  Google Scholar 

No A, Committee AM (2016) z-Scores and other scores in chemical proficiency testing—their meanings, and some common misconceptions. Anal Methods 8:5553–5555

Article  Google Scholar 

Conen D (2011) Measures to enhance patient safety. Importance of efficiency evaluation. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 54:171–175

CAS  Article  Google Scholar 

Carayon P, Wood KE (2009) Patient safety. Inf Knowl Syst Manag 8:23–46

Google Scholar 

Alaker M, Wynn GR, Arulampalam T (2016) Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis. Int J Surg 29:85–94

PubMed  Article  Google Scholar 

Mason JD, Ansell J, Warren N, Torkington J (2013) Is motion analysis a valid tool for assessing laparoscopic skill? Surg Endosc 27:1468–1477

PubMed  Article  Google Scholar 

Farcas MA, Azzie G (2020) Performance assessment-The knowledge, skills and attitudes of surgical performance. Semin Pediatr Surg 29(2):150903. https://doi.org/10.1016/j.sempedsurg.2020.150903

de Vries HM, Bekers E, van Oosterom MN et al (2022) c-MET Receptor-Targeted Fluorescence on the Road to Image-Guided Surgery in Penile Squamous Cell Carcinoma Patients. J Nucl Med 63:51–56

PubMed  Article  CAS  Google Scholar 

Korb ML, Huh WK, Boone JD et al (2015) Laparoscopic fluorescent visualization of the ureter with intravenous IRDye800CW. J Minim Invasive Gynecol 22:799–806

PubMed 

留言 (0)

沒有登入
gif