Lysophosphatidylcholine Acyltransferase 1 Deficiency Promotes Pulmonary Emphysema via Apoptosis of Alveolar Epithelial Cells

Vestbo, J., S.S. Hurd, A.G. Agusti, P.W. Jones, C. Vogelmeier, A. Anzueto, P.J. Barnes, L.M. Fabbri, F.J. Martinez, M. Nishimura, R.A. Stockley, D.D. Sin, and R. Rodriguez-Roisin. 2013. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American Journal of Respiratory and Critical Care Medicine 4: 347–365. https://doi.org/10.1164/rccm.201204-0596PP.

CAS  Article  Google Scholar 

Haruna, A., S. Muro, Y. Nakano, T. Ohara, Y. Hoshino, E. Ogawa, T. Hirai, A. Niimi, K. Nishimura, K. Chin, and M. Mishima. 2010. CT scan findings of emphysema predict mortality in COPD. Chest 3: 635–640. https://doi.org/10.1378/chest.09-2836.

Article  Google Scholar 

Crapo, J.D., B.E. Barry, P. Gehr, M. Bachofen, and E.R. Weibel. 1982. Cell number and cell characteristics of the normal human lung. American Review of Respiratory Disease 2: 332–337. https://doi.org/10.1164/arrd.1982.126.2.332.

Article  Google Scholar 

Wynne, B.M., L. Zou, V. Linck, R.S. Hoover, H.P. Ma and D.C. Eaton. 2017. Regulation of lung epithelial sodium channels by cytokines and chemokines. Frontiers in Immunology 766. https://doi.org/10.3389/fimmu.2017.00766.

Aspal, M. and R.L. Zemans. 2020. Mechanisms of ATII-to-ATI cell differentiation during lung regeneration. International Journal of Molecular Sciences 9: https://doi.org/10.3390/ijms21093188.

Rangasamy, T., C.Y. Cho, R.K. Thimmulappa, L. Zhen, S.S. Srisuma, T.W. Kensler, M. Yamamoto, I. Petrache, R.M. Tuder, and S. Biswal. 2004. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. Journal of Clinical Investigation 9: 1248–1259. https://doi.org/10.1172/JCI21146.

Article  Google Scholar 

Veldhuizen, R., K. Nag, S. Orgeig, and F. Possmayer. 1998. The role of lipids in pulmonary surfactant. Biochimica et Biophysica Acta 2–3: 90–108. https://doi.org/10.1016/s0925-4439(98)00061-1.

Article  Google Scholar 

Han, S., and R.K. Mallampalli. 2015. The role of surfactant in lung disease and host defense against pulmonary infections. Annals of the American Thoracic Society 5: 765–774. https://doi.org/10.1513/AnnalsATS.201411-507FR.

Article  Google Scholar 

Moré, J. M., D. R. Voelker, L. J. Silveira, M. G. Edwards, E. D. Chan and R. P. Bowler. 2010. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulmonary Medicine 53. https://doi.org/10.1186/1471-2466-10-53.

Agudelo, C.W., B.K. Kumley, E. Area-Gomez, Y. Xu, A.J. Dabo, P. Geraghty, M. Campos, R. Foronjy, and I. Garcia-Arcos. 2020. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS ONE 2: e0228279. https://doi.org/10.1371/journal.pone.0228279.

CAS  Article  Google Scholar 

Glasser, S.W., E.A. Detmer, M. Ikegami, C.L. Na, M.T. Stahlman, and J.A. Whitsett. 2003. Pneumonitis and emphysema in sp-C gene targeted mice. Journal of Biological Chemistry 16: 14291–14298. https://doi.org/10.1074/jbc.M210909200.

CAS  Article  Google Scholar 

Wert, S.E., M. Yoshida, A.M. Levine, M. Ikegami, T. Jones, G.F. Ross, J.H. Fisher, T.R. Korfhagen, and J.A. Whitsett. 2000. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proceedings of the National Academy of Sciences of the United States of America 11: 5972–5977. https://doi.org/10.1073/pnas.100448997.

Article  Google Scholar 

Lands William, E.M. 1958. Metabolism of glycerolipides: a comparison of lecithin and triglyceride synthesis. Journal of Biological Chemistry 2: 883–888. https://doi.org/10.1016/s0021-9258(18)70453-5.

Article  Google Scholar 

Shindou, H., and T. Shimizu. 2009. Acyl-CoA:lysophospholipid acyltransferases. Journal of Biological Chemistry 1: 1–5. https://doi.org/10.1074/jbc.R800046200.

CAS  Article  Google Scholar 

Valentine, W.J., T. Hashidate-Yoshida, S. Yamamoto and H. Shindou. 2020. Biosynthetic enzymes of membrane glycerophospholipid diversity as therapeutic targets for drug development. Advances in Experimental Medicine and Biology 5-27. https://doi.org/10.1007/978-3-030-50621-6_2.

Nakanishi, H., H. Shindou, D. Hishikawa, T. Harayama, R. Ogasawara, A. Suwabe, R. Taguchi, and T. Shimizu. 2006. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. Journal of Biological Chemistry 29: 20140–20147. https://doi.org/10.1074/jbc.M600225200.

CAS  Article  Google Scholar 

Chen, X., B.A. Hyatt, M.L. Mucenski, R.J. Mason, and J.M. Shannon. 2006. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proceedings of the National Academy of Sciences of the United States of America 31: 11724–11729. https://doi.org/10.1073/pnas.0604946103.

CAS  Article  Google Scholar 

Valentine, W.J., K. Yanagida, H. Kawana, N. Kono, N.N. Noda, J. Aoki, and H. Shindou. 2021. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases, which create membrane phospholipid diversity. Journal of Biological Chemistry 1: 101470. https://doi.org/10.1016/j.jbc.2021.101470.

CAS  Article  Google Scholar 

Harayama, T., M. Eto, H. Shindou, Y. Kita, E. Otsubo, D. Hishikawa, S. Ishii, K. Sakimura, M. Mishina, and T. Shimizu. 2014. Lysophospholipid acyltransferases mediate phosphatidylcholine diversification to achieve the physical properties required in vivo. Cell Metabolism 2: 295–305. https://doi.org/10.1016/j.cmet.2014.05.019.

CAS  Article  Google Scholar 

Bridges, J.P., M. Ikegami, L.L. Brilli, X. Chen, R.J. Mason, and J.M. Shannon. 2010. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. Journal of Clinical Investigation 5: 1736–1748. https://doi.org/10.1172/JCI38061.

CAS  Article  Google Scholar 

Suzuki, S., M. Ishii, T. Asakura, H. Namkoong, S. Okamori, K. Yagi, H. Kamata, T. Kusumoto, S. Kagawa, A.E. Hegab, M. Yoda, K. Horiuchi, N. Hasegawa, and T. Betsuyaku. 2020. ADAM17 protects against elastase-induced emphysema by suppressing CD62L(+) leukocyte infiltration in mice. American Journal of Physiology: Lung Cellular and Molecular Physiology 6: L1172–L1182. https://doi.org/10.1152/ajplung.00214.2019.

CAS  Article  Google Scholar 

Takahashi, S., H. Nakamura, M. Seki, Y. Shiraishi, M. Yamamoto, M. Furuuchi, T. Nakajima, S. Tsujimura, T. Shirahata, M. Nakamura, N. Minematsu, M. Yamasaki, H. Tateno, and A. Ishizaka. 2008. Reversal of elastase-induced pulmonary emphysema and promotion of alveolar epithelial cell proliferation by simvastatin in mice. American Journal of Physiology: Lung Cellular and Molecular Physiology 5: L882-890. https://doi.org/10.1152/ajplung.00238.2007.

CAS  Article  Google Scholar 

Sasaki, M., S. Chubachi, N. Kameyama, M. Sato, M. Haraguchi, M. Miyazaki, S. Takahashi, and T. Betsuyaku. 2015. Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography. American Journal of Physiology: Lung Cellular and Molecular Physiology 10: L1039-1045. https://doi.org/10.1152/ajplung.00366.2014.

CAS  Article  Google Scholar 

Artaechevarria, X., D. Blanco, G. De Biurrun, M. Ceresa, D. Perez-Martin, G. Bastarrika, J.P. De Torres, J.J. Zulueta, L.M. Montuenga, C. Ortiz-De-Solorzano, and A. Munoz-Barrutia. 2011. Evaluation of micro-CT for emphysema assessment in mice: comparison with non-radiological techniques. European Radiology 5: 954–962. https://doi.org/10.1007/s00330-010-1982-5.

Article  Google Scholar 

Hsia, C. C., D. M. Hyde, M. Ochs, E. R. Weibel and Ats Ers Joint Task Force on Quantitative Assessment of Lung Structure. 2010. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. American Journal of Respiratory and Critical Care Medicine 4: 394–418. https://doi.org/10.1164/rccm.200809-1522ST.

Article  Google Scholar 

Asakura, T., M. Ishii, H. Namkoong, S. Suzuki, S. Kagawa, K. Yagi, T. Komiya, T. Hashimoto, S. Okamori, H. Kamata, S. Tasaka, A. Kihara, A.E. Hegab, N. Hasegawa, and T. Betsuyaku. 2018. Sphingosine 1-phosphate receptor modulator ONO-4641 stimulates CD11b(+)Gr-1(+) cell expansion and inhibits lymphocyte infiltration in the lungs to ameliorate murine pulmonary emphysema. Mucosal Immunology 6: 1606–1620. https://doi.org/10.1038/s41385-018-0077-5.

CAS  Article  Google Scholar 

Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 8: 911–917. https://doi.org/10.1139/o59-099.

Article  Google Scholar 

Takahashi, S., M. Ishii, H. Namkoong, A.E. Hegab, T. Asami, K. Yagi, M. Sasaki, M. Haraguchi, M. Sato, N. Kameyama, T. Asakura, S. Suzuki, S. Tasaka, S. Iwata, N. Hasegawa, and T. Betsuyaku. 2016. Pneumococcal infection aggravates elastase-induced emphysema via matrix metalloproteinase 12 overexpression. Journal of Infectious Diseases 6: 1018–1030. https://doi.org/10.1093/infdis/jiv527.

CAS  Article  Google Scholar 

Plantier, L., S. Marchand-Adam, V.G. Antico Arciuch, L. Boyer, C. De Coster, J. Marchal, R. Bachoual, A. Mailleux, J. Boczkowski, and B. Crestani. 2007. Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice. American Journal of Physiology: Lung Cellular and Molecular Physiology 5: L1230-1239. https://doi.org/10.1152/ajplung.00460.2006.

CAS  Article  Google Scholar 

Tasaka, S., K. Inoue, K. Miyamoto, Y. Nakano, H. Kamata, H. Shinoda, N. Hasegawa, T. Miyasho, M. Satoh, H. Takano, and A. Ishizaka. 2010. Role of interleukin-6 in elastase-induced lung inflammatory changes in mice. Experimental Lung Research 6: 362–372. https://doi.org/10.3109/01902141003678590.

CAS  Article  Google Scholar 

Churg, A., S. Zhou, and J.L. Wright. 2012. Series “matrix metalloproteinases in lung health and disease”: matrix metalloproteinases in COPD. European Respiratory Journal 1: 197–209. https://doi.org/10.1183/09031936.00121611.

CAS  Article  Google Scholar 

Khadangi, F., A.S. Forgues, S. Tremblay-Pitre, A. Dufour-Mailhot, C. Henry, M. Boucher, M.J. Beaulieu, M. Morissette, L. Fereydoonzad, D. Brunet, A. Robichaud, and Y. Bosse. 2021. Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Scientific Reports 1: 7777. https://doi.org/10.1038/s41598-021-87462-x.

CAS  Article  Google Scholar 

Yokohori, N., K. Aoshiba, and A. Nagai. 2004. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 2: 626–632. https://doi.org/10.1378/chest.125.2.626.

Article  Google Scholar 

Checa, M., J.S. Hagood, R. Velazquez-Cruz, V. Ruiz, C. García-De-Alba, C. Rangel-Escareño, F. Urrea, C. Becerril, M. Montaño, S. García-Trejo, J. Cisneros Lira, A. Aquino-Gálvez, A. Pardo, and M. Selman. 2016. Cigarette smoke enhances the expression of profibrotic molecules in alveolar epithelial cells. PLoS ONE 3: e0150383. https://doi.org/10.1371/journal.pone.0150383.

CAS  Article  Google Scholar 

Grevengoed, T.J., E.L. Klett and R.A. Coleman. 2014. Acyl-CoA metabolism and partitioning. Annual Review of Nutrition 1-30. https://doi.org/10.1146/annurev-nutr-071813-105541.

Murakami, M., H. Sato and Y. Taketomi. 2020. Updating phospholipase A2 biology. Biomolecules 10: https://doi.org/10.3390/biom10101457.

Quan, J., A.M. Bode and X. Luo. 2021. ACSL family: the regulatory mechanisms and therapeutic implications in cancer. European Journal of Pharmacology 174397. https://doi.org/10.1016/j.ejphar.2021.174397.

Yamashita, A., Y. Hayashi, N. Matsumoto, Y. Nemoto-Sasaki, S. Oka, T. Tanikawa, and T. Sugiura. 2014. Glycerophosphate/acylglycerophosphate acyltransferases. Biology (Basel) 4: 801–830. https://doi.org/10.3390/biology3040801.

Article  Google Scholar 

Han, C., G. Yu, Y. Mao, S. Song, L. Li, L. Zhou, Z. Wang, Y. Liu, M. Li, and B. Xu. 2020. LPCAT1 enhances castration resistant prostate cancer progression via increased mRNA synthesis and PAF production. PLoS ONE 11: e0240801. https://doi.org/10.1371/journal.pone.0240801.

CAS  Article  Google Scholar 

Zhou, M., K. Osanai, M. Kobayashi, T. Oikawa, K. Nakagawa, S. Mizuno, Y. Muraki, and H. Toga. 2014. Adenovector-mediated gene transfer of lysophosphatidylcholine acyltransferase 1 attenuates oleic acid-induced acute lung injury in rats. Critical Care Medicine 11: e716-724. https://doi.org/10.1097/CCM.0000000000000633.

CAS  Article  Google Scholar 

Krimmer, D.I., and B.G. Oliver. 2011. What can in vitro models of COPD tell us? Pulmonary Pharmacology and Therapeutics 5: 471–477. https://doi.org/10.1016/j.pupt.2010.12.002.

CAS  Article  Google Scholar 

Postle, A.D., L.W. Gonzales, W. Bernhard, G.T. Clark, M.H. Godinez, R.I. Godinez, and P.L. Ballard. 2006. Lipidomics of cellular and secreted phospholipids from differentiated human fetal type II alveolar epithelial cells. Journal of Lipid Research 6: 1322–1331. https://doi.org/10.1194/jlr.M600054-JLR200.

CAS  Article  Google Scholar 

Wright, J.L., M. Cosio, and A. Churg. 2008. Animal models of chronic obstructive pulmonary disease. American Journal of Physiology: Lung Cellular and Molecular Physiology 1: L1-15. https://doi.org/10.1152/ajplung.90200.2008.

CAS  Article  Google Scholar 

Barkauskas, C.E., M.J. Cronce, C.R. Rackley, E.J. Bowie, D.R. Keene, B.R. Stripp, S.H. Randell, P.W. Noble, and B.L. Hogan. 2013. Type 2 alveolar cells are stem cells in adult lung. Journal of Clinical Investigation 7: 3025–3036. https://doi.org/10.1172/JCI68782.

CAS  Article 

留言 (0)

沒有登入
gif