Quercetin Mitigates Endothelial Activation in a Novel Intestinal-Endothelial-Monocyte/Macrophage Coculture Setup

Endemann, D.H., and E.L. Schiffrin. 2004. Endothelial dysfunction. Journal of the American Society of Nephrology 15 (8): 1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA.

CAS  Article  PubMed  Google Scholar 

Page, A.V., and W.C. Liles. 2013. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence 4 (6): 507–516. https://doi.org/10.4161/viru.24530.

Article  PubMed  PubMed Central  Google Scholar 

Kershaw, K.N., A.D. Lane-Cordova, M.R. Carnethon, H.A. Tindle, and K. Liu. 2017. Chronic stress and endothelial dysfunction: The multi-ethnic study of atherosclerosis (MESA). American journal of hypertension 30 (1): 75–80. https://doi.org/10.1093/ajh/hpw103.

CAS  Article  PubMed  Google Scholar 

WHO. 2019. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. The Lancet Global Health 7 (10): e1332–e1345. https://doi.org/10.1016/S2214-109X(19)30318-3.

Article  Google Scholar 

Gimbrone, M.A., Jr., and G. Garcia-Cardena. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation research 118 (4): 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bowman, J.D., S. Surani, and M.A. Horseman. 2017. Endotoxin toll-like receptor-4 and atherosclerotic heart disease. Current cardiology reviews 13 (2): 86–93. https://doi.org/10.2174/1573403X12666160901145313.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rienks, J., J. Barbaresko, and U. Nothlings. 2017. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients 9 (4): 415. https://doi.org/10.3390/nu9040415.

CAS  Article  PubMed Central  Google Scholar 

Wang, X., Y.Y. Ouyang, J. Liu, and G. Zhao. 2014. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. British Journal of Nutrition 111 (1): 1–11. https://doi.org/10.1017/S000711451300278X.

CAS  Article  PubMed  Google Scholar 

Tang, Z., M. Li, X. Zhang, and W. Hou. 2016. Dietary flavonoid intake and the risk of stroke: A dose-response meta-analysis of prospective cohort studies. British Medical Journal Open 6 (6): e008680. https://doi.org/10.1136/bmjopen-2015-008680.

Article  Google Scholar 

Grosso, G., A. Micek, J. Godos, A. Pajak, et al. 2017. Dietary flavonoid and Lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. American journal of epidemiology 185 (12): 1304–1316. https://doi.org/10.1093/aje/kww207.

Article  PubMed  Google Scholar 

Kim, Y., and Y. Je. 2017. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. Clinical nutrition ESPEN 20: 68–77. https://doi.org/10.1016/j.clnesp.2017.03.004.

Article  PubMed  Google Scholar 

Milenkovic, D., C. Morand, A. Cassidy, A. Konic-Ristic, et al. 2017. Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Advances in Nutrition 8 (4): 558–570. https://doi.org/10.3945/an.116.013623.

Article  PubMed  PubMed Central  Google Scholar 

Manach, C., D. Milenkovic, T. Van de Wiele, A. Rodriguez-Mateos, et al. 2017. Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular nutrition & food research 61 (6): 1600557. https://doi.org/10.1002/mnfr.201600557.

CAS  Article  Google Scholar 

Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and chemical toxicology 33 (12): 1061–1080.

CAS  Article  Google Scholar 

Erlund, I. 2004. Review of the flavonoids quercetin hesperetin naringenin Dietary sources bioactivities and epidemiology. Nutrition research 24 (10): 851–874. https://doi.org/10.1016/j.nutres.2004.07.005.

CAS  Article  Google Scholar 

Russo, M., C. Spagnuolo, I. Tedesco, S. Bilotto, and G.L. Russo. 2012. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical pharmacology 83 (1): 6–15.

CAS  Article  Google Scholar 

Serban, M.C., A. Sahebkar, A. Zanchetti, D.P. Mikhailidis, et al. 2016. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association 5 (7): e002713. https://doi.org/10.1161/JAHA.115.002713.

Article  PubMed  PubMed Central  Google Scholar 

Ou, Q., Z. Zheng, Y. Zhao, and W. Lin. 2020. Impact of quercetin on systemic levels of inflammation: A meta-analysis of randomised controlled human trials. International journal of food sciences and nutrition 71 (2): 152–163. https://doi.org/10.1080/09637486.2019.1627515.

CAS  Article  PubMed  Google Scholar 

Kroon, P.A., M.N. Clifford, A. Crozier, A.J. Day, et al. 2004. How should we assess the effects of exposure to dietary polyphenols in vitro? The American journal of clinical nutrition 80 (1): 15–21.

CAS  Article  Google Scholar 

Scalbert, A., and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. The Journal of nutrition 130 (8): 2073s–2085s.

CAS  Article  Google Scholar 

Balentine, D.A., J.T. Dwyer, J.W. Erdman Jr., M.G. Ferruzzi, et al. 2015. Recommendations on reporting requirements for flavonoids in research. The American journal of clinical nutrition 101 (6): 1113–1125. https://doi.org/10.3945/ajcn.113.071274.

CAS  Article  PubMed  Google Scholar 

Avila-Galvez, M.A., A. Gonzalez-Sarrias, and J.C. Espin. 2018. In vitro research on dietary polyphenols and health: A call of caution and a guide on how to proceed. Journal of Agricultural and Food Chemistry 66 (30): 7857–7858. https://doi.org/10.1021/acs.jafc.8b03377.

CAS  Article  PubMed  Google Scholar 

Williamson, G., C.D. Kay, and A. Crozier. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety 17 (5): 1054–1112. https://doi.org/10.1111/1541-4337.12351.

Article  PubMed  Google Scholar 

Needs, P.W., and P.A. Kroon. 2006. Convenient syntheses of metabolically important quercetin glucuronides and sulfates. Tetrahedron 62 (29): 6862–6868. https://doi.org/10.1016/j.tet.2006.04.102.

CAS  Article  Google Scholar 

Tribolo, S., F. Lodi, C. Connor, S. Suri, et al. 2008. Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 197 (1): 50–56. https://doi.org/10.1016/j.atherosclerosis.2007.07.040.

CAS  Article  PubMed  Google Scholar 

Le Ferrec, E., C. Chesne, P. Artusson, D. Brayden, et al. 2001. In vitro models of the intestinal barrier: The report and recommendations of ECVAM Workshop 46. Alternatives to Laboratory Animals 29 (6): 649–668. https://doi.org/10.1177/026119290102900604.

Article  PubMed  Google Scholar 

Gonzales, G.B., J. Van Camp, H. Vissenaekens, K. Raes, et al. 2015. Review on the use of cell cultures to study metabolism, transport, and accumulation of flavonoids: From mono-cultures to co-culture systems. Comprehensive reviews in food science and food safety 14 (6): 741–754. https://doi.org/10.1111/1541-4337.12158.

CAS  Article  Google Scholar 

Toaldo, I.M., J. Van Camp, G.B. Gonzales, S. Kamiloglu, et al. 2016. Resveratrol improves TNF-alpha-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. The Journal of nutritional biochemistry 36: 21–30.

CAS  Article  Google Scholar 

Wu, T., C. Grootaert, J. Pitart, N.K. Vidovic, et al. 2018. Aronia (Aronia melanocarpa) polyphenols modulate the microbial community in a simulator of the human intestinal microbial ecosystem (SHIME) and decrease secretion of proinflammatory markers in a Caco-2/endothelial cell coculture model. Molecular nutrition & food research 62 (22): 1800607. https://doi.org/10.1002/mnfr.201800607.

CAS  Article  Google Scholar 

Kamiloglu, S., C. Grootaert, E. Capanoglu, C. Ozkan, et al. 2017. Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Molecular Nutrition & Food Research 61 (2): 1600455. https://doi.org/10.1002/mnfr.201600455.

Kuntz, S., H. Asseburg, S. Dold, A. Rompp, et al. 2015. Inhibition of low-grade inflammation by anthocyanins from grape extract in an in vitro epithelial-endothelial co-culture model. Food & function 6 (4): 1136–1149. https://doi.org/10.1039/c4fo00755g.

CAS  Article  Google Scholar 

Bian, Y., Y. Dong, J. Sun, M. Sun, et al. 2020. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. Journal of agricultural and food chemistry 68 (1): 160–167. https://doi.org/10.1021/acs.jafc.9b06294.

CAS  Article  PubMed  Google Scholar 

Chavez-Sanchez, L., J.E. Espinosa-Luna, K. Chavez-Rueda, M.V. Legorreta-Haquet, et al. 2014. Innate immune system cells in atherosclerosis. Archives of medical research 45 (1): 1–14. https://doi.org/10.1016/j.arcmed.2013.11.007.

CAS  Article  PubMed  Google Scholar 

Mestas, J., and K. Ley. 2008. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends in cardiovascular medicine 18 (6): 228–232. https://doi.org/10.1016/j.tcm.2008.11.004.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gustot, A., V. Raussens, M. Dehousse, M. Dumoulin, et al. 2013. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-beta sheet structure. Cellular and Molecular Life Sciences 70 (16): 2999–3012. https://doi.org/10.1007/s00018-012-1245-5.

CAS  Article  PubMed  Google Scholar 

Vissenaekens, H., G. Smagghe, H. Criel, C. Grootaert, et al. 2021. Intracellular quercetin accumulation and its impact on mitochondrial dysfunction in intestinal Caco-2 cells. Food Research International 145: 110430. https://doi.org/10.1016/j.foodres.2021.110430.

CAS  Article  PubMed  Google Scholar 

Guo, S., R. Al-Sadi, H.M. Said, and T.Y. Ma. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. The American journal of pathology 182 (2): 375–387. https://doi.org/10.1016/j.ajpath.2012.10.014.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ferraris, R.P., S. Yasharpour, K.C. Lloyd, R. Mirzayan, and J.M. Diamond. 1990. Luminal glucose concentrations in the gut under normal conditions. American Journal of Physiology-Gastrointestinal and Liver Physiology 259 (5): G822-G837. https://doi.org/10.1152/ajpgi.1990.259.5.G822

留言 (0)

沒有登入
gif