Organotypic whole hemisphere brain slice models to study the effects of donor age and oxygen-glucose-deprivation on the extracellular properties of cortical and striatal tissue

Long KR, Huttner WB. How the extracellular matrix shapes neural development. Open Biol. 2019;9(1):180216.

Article  Google Scholar 

Barros CS, Franco SJ, Muller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol. 2011;3(1):a005108.

Article  Google Scholar 

Suttkus A, Morawski M, Arendt T. Protective properties of neural extracellular matrix. Mol Neurobiol. 2016;53(1):73–82.

Article  Google Scholar 

Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 2008;130(4):635–53.

Article  Google Scholar 

Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88(4):1277–340.

Article  Google Scholar 

Miller GM, Hsieh-Wilson LC. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol. 2015;274(Pt B):115–25.

Article  Google Scholar 

Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol. 2006;2(9):467–73.

Article  Google Scholar 

Sugahara K, Mikami T. Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol. 2007;17(5):536–45.

Article  Google Scholar 

Morawski M, Reinert T, Meyer-Klaucke W, Wagner FE, Troger W, Reinert A, et al. Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci Rep. 2015;5:16471.

Article  Google Scholar 

Colbourn R, Naik A, Hrabetova S. ECS dynamism and its influence on neuronal excitability and seizures. Neurochem Res. 2019;44(5):1020–36.

Article  Google Scholar 

Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7.

Article  Google Scholar 

Soria FN, Miguelez C, Penagarikano O, Tonnesen J. Current techniques for investigating the brain extracellular space. Front Neurosci. 2020;14:570750.

Article  Google Scholar 

Bukalo O, Schachner M, Dityatev A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience. 2001;104(2):359–69.

Article  Google Scholar 

Gogolla N, Caroni P, Luthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009;325(5945):1258–61.

Article  Google Scholar 

Bruckner G, Hartig W, Kacza J, Seeger J, Welt K, Brauer K. Extracellular matrix organization in various regions of rat brain grey matter. J Neurocytol. 1996;25(5):333–46.

Article  Google Scholar 

Dauth S, Grevesse T, Pantazopoulos H, Campbell PH, Maoz BM, Berretta S, et al. Extracellular matrix protein expression is brain region dependent. J Comp Neurol. 2016;524(7):1309–36.

Article  Google Scholar 

Vorisek I, Sykova E. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum. J Cereb Blood Flow Metab. 1997;17(2):191–203.

Article  Google Scholar 

Lehmenkuhler A, Sykova E, Svoboda J, Zilles K, Nicholson C. Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience. 1993;55(2):339–51.

Article  Google Scholar 

McKenna M, Shackelford D, Ferreira Pontes H, Ball B, Nance E. Multiple particle tracking detects changes in brain extracellular matrix and predicts neurodevelopmental age. ACS Nano. 2021;15(5):8559–73.

Article  Google Scholar 

Waters J. Sources of widefield fluorescence from the brain. Elife. 2020;9:e59841.

Article  Google Scholar 

Silasi G, Xiao D, Vanni MP, Chen AC, Murphy TH. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice. J Neurosci Methods. 2016;267:141–9.

Article  Google Scholar 

Humpel C. Organotypic brain slice cultures: a review. Neuroscience. 2015;305:86–98.

Article  Google Scholar 

Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997;20(10):471–7.

Article  Google Scholar 

Wise-Faberowski L, Robinson PN, Rich S, Warner DS. Oxygen and glucose deprivation in an organotypic hippocampal slice model of the developing rat brain: the effects on N-methyl-D-aspartate subunit composition. Anesth Analg. 2009;109(1):205–10.

Article  Google Scholar 

Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc. 1999;3(3):278–90.

Article  Google Scholar 

Pozzo-Miller LM, N. K, Connor JA, Landis DM. Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Nueroscience. 1994;63(2):471–87.

Article  Google Scholar 

Petersen MA, Dailey ME. Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia. 2004;46(2):195–206.

Article  Google Scholar 

Duff K, Noble W, Gaynor K, Matsuoka Y. Organotypic slice cultures from transgenic mice as disease model systems. J Mol Neurosci. 2002;19(3):317–20.

Article  Google Scholar 

Su T, Paradiso B, Long YS, Liao WP, Simonato M. Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res. 2011;1385:68–76.

Article  Google Scholar 

Staal JA, Alexander SR, Liu Y, Dickson TD, Vickers JC. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice. PLoS One. 2011;6(7):e22040.

Article  Google Scholar 

Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng. 2020;14:3.

Article  Google Scholar 

Joseph A, Liao R, Zhang M, Helmbrecht H, McKenna M, Filteau JR, et al. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Transl Med. 2020;5(3):e10175.

Article  Google Scholar 

Pantazopoulos H, Berretta S. In sickness and in health: Perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast. 2016;2016:9847696.

Article  Google Scholar 

Tasca CI, Dal-Cim T, Cimarosti H. In vitro oxygen-glucose deprivation to study ischemic cell death. Methods Mol Biol. 2015;1254:197–210.

Article  Google Scholar 

Joseph A, Liao R, Zhang M, Helmbrecht H, McKenna M, Filteau JR, et al. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Translat Med. 2020;5(3):e10175.

Google Scholar 

Wood TR, Hildahl K, Helmbrecht H, Corry KA, Moralejo DH, Kolnik SE, et al. A ferret brain slice model of oxygen-glucose deprivation captures regional responses to perinatal injury and treatment associated with specific microglial phenotypes. Bioeng Translat Med. 2021;7:e10265.

Google Scholar 

Graybiel AM, Grafton ST. The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol. 2015;7(8):a021691.

Article  Google Scholar 

Baez-Mendoza R, Schultz W. The role of the striatum in social behavior. Front Neurosci. 2013;7:233.

Article  Google Scholar 

Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89.

Article  Google Scholar 

Jawabri KH, Sharma S. Physiology, Cerebral Cortex Functions. Treasure Island: StatPearls; 2022.

Google Scholar 

Martin LJ, Brambrink AM, Lehmann C, Portera-Cailliau C, Koehler R, Rothstein J, et al. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol. 1997;42(3):335–48.

Article  Google Scholar 

Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–41.

Article  Google Scholar 

Volpe JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol. 2012;72(2):156–66.

Article  Google Scholar 

Zou J, Vetreno RP, Crews FT. ATP-P2X7 receptor signaling controls basal and TNFalpha-stimulated glial cell proliferation. Glia. 2012;60(4):661–73.

Article  Google Scholar 

Schmuck M, Temme T, Heinz S, Baksmeier C, Mosig A, Colomina MT, et al. Automatic counting and positioning of 5-bromo-2-deoxyuridine (BrdU) positive cells in cortical layers of rat brain slices. Neurotoxicology. 2014;43:127–33.

Article  Google Scholar 

Chehrehasa F, Meedeniya AC, Dwyer P, Abrahamsen G, Mackay-Sim A. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods. 2009;177(1):122–30.

Article  Google Scholar 

Curtis C, Rokem A, Nance E. diff_classifier: Parallelization of multi-particle tracking video analyses. J Open Source Softw. 2019;4(36):989.

Article  Google Scholar 

Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90.

Article  Google Scholar 

Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4:149ra19.

Article  Google Scholar 

Curtis C, McKenna M, Pontes H, Toghani D, Choe A, Nance E. Predicting in situ nanoparticle behavior using multiple particle tracking and artificial neural networks. Nanoscale. 2019;11(46):22515–30.

Article  Google Scholar 

Song HF, Zhou J, Pan K, Wang QJ, Wang H, Huang LX, et al. Antitumor effects and mechanisms of a dendritic cell vaccine which silenced SOCS1 by siRNA, stimulated by OK-432 and pulsed with lysate of HepG2 cells. Ai Zheng. 2008;27(7):685–91.

Google Scholar 

Zhang J, Wu L, Feng MX, Sexton P, Bai CX, Qu JM, et al. Pulmonary fibroblasts from COPD patients show an impaired response of elastin synthesis to TGF-beta1. Respir Physiol Neurobiol. 2011;177(3):236–40.

Article  Google Scholar 

Plenz D, Kitai ST. Organotypic cortex-striatum-mesencephalon cultures: the nigrostriatal pathway. Neurosci Lett. 1996;209(3):177–80.

Article  Google Scholar 

Marksteiner J, Humpel C. Beta-amyloid expression, release and extracellular deposition in aged rat brain slices. Mol Psychiatry. 2008;13(10):939–52.

Article  Google Scholar 

Delbridge ARD, Huh D, Brickelmaier M, Burns JC, Roberts C, Challa R, et al. Organotypic brain slice culture microglia exhibit molecular similarity to acutely-isolated adult microglia and provide a platform to study Neuroinflammation. Front Cell Neurosci. 2020;14:592005.

Article  Google Scholar 

Alaylioglu M, Dursun E, Yilmazer S, Ak DG. A bridge between in vitro and in vivo studies in neuroscience: Organotypic brain slice cultures. Noropsikiyatri Ars. 2020;57(4):333–7.

Google Scholar 

留言 (0)

沒有登入
gif