T Cell Abnormalities in X-Linked Agammaglobulinaemia: an Updated Review

Mattsson PT, Vihinen M, Smith CIE (1996) X-linked agammaglobulinemia (XLA): A genetic tyrosine kinase (Btk) disease. BioEssays 18:825–834. https://doi.org/10.1002/bies.950181009

CAS  Article  PubMed  Google Scholar 

Suri D, Rawat A, Singh S (2016) X-linked agammaglobulinemia. Indian J Pediatr 83:331–337. https://doi.org/10.1007/s12098-015-2024-8

Article  PubMed  Google Scholar 

Martini H, Enright V, Perro M et al (2011) Importance of B cell co-stimulation in CD4+ T cell differentiation: X-linked agammaglobulinaemia, a human model. Clin Exp Immunol 164:381–387. https://doi.org/10.1111/j.1365-2249.2011.04377.x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rawlings DJ (1999) Bruton’s tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin Immunol 91:243–253. https://doi.org/10.1006/clim.1999.4732

CAS  Article  PubMed  Google Scholar 

Conley ME (2002) Early defects in B cell development: current opinion in allergy and clinical immunology 2:517–522. https://doi.org/10.1097/00130832-200212000-00007

Article  Google Scholar 

Futatani T, Miyawaki T, Tsukada S et al (1998) Deficient expression of Bruton’s tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection. Blood 91:595–602. https://doi.org/10.1182/blood.V91.2.595

CAS  Article  PubMed  Google Scholar 

Taneichi H, Kanegane H, Mohamed Sira M et al (2008) Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia. Clin Immunol 126:148–154. https://doi.org/10.1016/j.clim.2007.10.005

CAS  Article  PubMed  Google Scholar 

Smith CI, Baskin B, Humire-Greiff P et al (1994) Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol 152:557–565

CAS  PubMed  Google Scholar 

Parker DC (1993) T cell-dependent b cell activation. Annu Rev Immunol 11:331–360. https://doi.org/10.1146/annurev.iy.11.040193.001555

CAS  Article  PubMed  Google Scholar 

Crotty S (2011) Follicular helper CD4 T Cells (T FH ). Annu Rev Immunol 29:621–663. https://doi.org/10.1146/annurev-immunol-031210-101400

CAS  Article  PubMed  Google Scholar 

Shelyakin PV, Lupyr KR, Egorov ES et al (2021) Naïve regulatory T cell subset is altered in X-linked agammaglobulinemia. Front Immunol. https://doi.org/10.3389/fimmu.2021.697307

Article  PubMed  PubMed Central  Google Scholar 

Hernandez-Trujillo VP, Scalchunes C, Cunningham-Rundles C et al (2014) Autoimmunity and inflammation in X-linked agammaglobulinemia. J Clin Immunol 34:627–632. https://doi.org/10.1007/s10875-014-0056-x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Paroli M, Accapezzato D, Francavilla V et al (2002) Long-lasting memory-resting and memory-effector CD4+T cells in human X-linked agammaglobulinemia. Blood 99:2131–2137. https://doi.org/10.1182/blood.V99.6.2131

CAS  Article  PubMed  Google Scholar 

Germain RN (1994) MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation. Cell 76:287–299. https://doi.org/10.1016/0092-8674(94)90336-0

CAS  Article  PubMed  Google Scholar 

Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272:54–60. https://doi.org/10.1126/science.272.5258.54

CAS  Article  PubMed  Google Scholar 

Petersone L, Edner NM, Ovcinnikovs V et al (2018) T cell/B cell collaboration and autoimmunity: an intimate relationship. Front Immunol 9:1941. https://doi.org/10.3389/fimmu.2018.01941

CAS  Article  PubMed  PubMed Central  Google Scholar 

Morales-Aza B, Glennie SJ, Garcez TP et al (2009) Impaired maintenance of naturally acquired T-cell memory to the meningococcus in patients with B-cell immunodeficiency. Blood 113:4206–4212. https://doi.org/10.1182/blood-2008-08-171587

CAS  Article  PubMed  Google Scholar 

Sallusto F, Mackay CR, Lanzavecchia A (2000) The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 18:593–620. https://doi.org/10.1146/annurev.immunol.18.1.593

CAS  Article  PubMed  Google Scholar 

Vitetta ES, Berton MT, Burger C et al (1991) Memory B and T cells. Annu Rev Immunol 9:193–217. https://doi.org/10.1146/annurev.iy.09.040191.001205

CAS  Article  PubMed  Google Scholar 

Plebani A, Fischer MB, Meini A et al (1997) T cell activity and cytokine production in X-linked agammaglobulinemia: implications for vaccination strategies. Int Arch Allergy Immunol 114:90–93. https://doi.org/10.1159/000237649

CAS  Article  PubMed  Google Scholar 

Crockard AD, Boyd NA, McNeill TA, McCluskey DR (1992) CD4 lymphocyte subset abnormalities associated with impaired delayed cutaneous hypersensitivity reactions in patients with X-linked agammaglobulinaemia. Clin Exp Immunol 88:29–34. https://doi.org/10.1111/j.1365-2249.1992.tb03034.x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Di Rosa F, Matzinger P (1996) Long-lasting CD8 T cell memory in the absence of CD4 T cells or B cells. J Exp Med 183:2153–2163. https://doi.org/10.1084/jem.183.5.2153

Article  PubMed  Google Scholar 

Swain SL, Hu H, Huston G (1999) Class II-independent generation of CD4 memory T cells from effectors. Science 286:1381–1383. https://doi.org/10.1126/science.286.5443.1381

CAS  Article  PubMed  Google Scholar 

van Essen D, Dullforce P, Brocker T, Gray D (2000) Cellular interactions involved in Th cell memory. J Immunol 165:3640–3646. https://doi.org/10.4049/jimmunol.165.7.3640

Article  PubMed  Google Scholar 

Barbosa RR, Silva SP, Silva SL et al (2011) Primary B-cell deficiencies reveal a link between human IL-17-producing CD4 T-cell homeostasis and B-cell differentiation. PLoS ONE 6:e22848. https://doi.org/10.1371/journal.pone.0022848

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ramesh M, Simchoni N, Hamm D, Cunningham-Rundles C (2015) High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia. Clin Immunol 161:190–196. https://doi.org/10.1016/j.clim.2015.09.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Murali-Krishna K, Lau LL, Sambhara S et al (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381. https://doi.org/10.1126/science.286.5443.1377

CAS  Article  PubMed  Google Scholar 

Zinkernagel RM, Bachmann MF, Kündig TM et al (1996) On immunological memory. Annu Rev Immunol 14:333–367. https://doi.org/10.1146/annurev.immunol.14.1.333

CAS  Article  PubMed  Google Scholar 

Kansas GS, Wood GS, Engleman EG (1985) Maturational and functional diversity of human B lymphocytes delineated with anti-Leu-8. J Immunol 134:3003–3006

CAS  PubMed  Google Scholar 

Rawat A, Jindal AK, Suri D et al (2021) Clinical and genetic profile of X-linked agammaglobulinemia: a multicenter experience from India. Front Immunol. https://doi.org/10.3389/fimmu.2020.612323

Article  PubMed  PubMed Central  Google Scholar 

Pituch-Noworolska A, Zwonarz K, Błaut-Szlósarczyk A et al (2013) T lymphocytes and NK cells in X-linked agammaglobulinemia. Przegl Lek 70:1048–1050

PubMed  Google Scholar 

Sharapova SO, Pashchenko OE, Guryanova IE et al (2018) Recent thymic emigrants, T regulatory cells, and BAFF level in children with X-linked agammaglobulinaemia in association with chronic respiratory disease. Allergol Immunopathol 46:58–66. https://doi.org/10.1016/j.aller.2017.01.011

CAS  Article  Google Scholar 

Fuchs E, Matzinger P (1992) B cells turn off virgin but not memory T cells. Science 258:1156–1159. https://doi.org/10.1126/science.1439825

CAS  Article  PubMed  Google Scholar 

Scognamiglio P, Accapezzato D, Casciaro MA et al (1999) Presence of effector CD8+ T cells in hepatitis C virus-exposed healthy seronegative donors. J Immunol 162:6681–6689

CAS  PubMed  Google Scholar 

Liu Y, Wu Y, Lam K-T et al (2012) Dendritic and T cell response to influenza is normal in the patients with X-linked agammaglobulinemia. J Clin Immunol 32:421–429. https://doi.org/10.1007/s10875-011-9639-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Edwards ESJ, Bosco JJ, Aui PM et al (2019) Predominantly antibody-deficient patients with non-infectious complications have reduced naive B, Treg, Th17, and Tfh17 cells. Front Immunol 10:2593. https://doi.org/10.3389/fimmu.2019.02593

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rozynska KE, Spickett GP, Millrain M et al (1989) Accessory and T cell defects in acquired and inherited hypogammaglobulinaemia. Clin Exp Immunol 78:1–6

CAS  PubMed  PubMed Central  Google Scholar 

Akbar AN, Salmon M, Janossy G (1991) The synergy between naive and memory T cells during activation. Immunol Today 12:184–188. https://doi.org/10.1016/0167-5699(91)90050-4

留言 (0)

沒有登入
gif