Genetic pain loss disorders

Cox, J. J., Woods, C. G. & Kurth, I. Peripheral sensory neuropathies–pain loss vs. pain gain. Med. Genet. 32, 233–241 (2020).

Google Scholar 

Rotthier, A. et al. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 132, 2699–2711 (2009).

PubMed  PubMed Central  Google Scholar 

Rotthier, A., Baets, J., Timmerman, V. & Janssens, K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol. 8, 73–85 (2012).

CAS  PubMed  Google Scholar 

Nicholson, G. A. SPTLC1-Related Hereditary Sensory Neuropathy. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1390/ (updated 2 Dec 2021).

Schon, K. R. et al. Congenital Insensitivity to Pain Overview. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK481553/ (updated 11 Jun 2020).

Haga, N., Kubota, M. & Miwa, Z. Epidemiology of hereditary sensory and autonomic neuropathy type IV and V in Japan. Am. J. Med. Genet. A 161A, 871–874 (2013).

PubMed  Google Scholar 

Kurth, I. Hereditary Sensory and Autonomic Neuropathy Type II. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK49247/ (updated 1 Apr 2021).

Curro, R. et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain 144, 1542–1550 (2021).

PubMed  PubMed Central  Google Scholar 

Lafreniere, R. G. et al. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the study of Canadian genetic isolates. Am. J. Hum. Genet. 74, 1064–1073 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Dong, J., Edelmann, L., Bajwa, A. M., Kornreich, R. & Desnick, R. J. Familial dysautonomia: detection of the IKBKAP IVS20(+6T –> C) and R696P mutations and frequencies among Ashkenazi Jews. Am. J. Med. Genet. 110, 253–257 (2002).

PubMed  Google Scholar 

Davidson, G. et al. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J. Neurol. 259, 1673–1685 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Houlden, H. et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129, 411–425 (2006).

PubMed  Google Scholar 

Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M. & Nicholson, G. A. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312 (2001).

CAS  PubMed  Google Scholar 

Nicholson, G. A. et al. Hereditary sensory neuropathy type I: haplotype analysis shows founders in southern England and Europe. Am. J. Hum. Genet. 69, 655–659 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Edvardson, S. et al. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann. Neurol. 71, 569–572 (2012).

CAS  PubMed  Google Scholar 

Manganelli, F. et al. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 88, 2132–2140 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Fortugno, P. et al. Recessive mutations in the neuronal isoforms of DST, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum. Mutat. 40, 106–114 (2019).

CAS  PubMed  Google Scholar 

Jin, J. Y. et al. Novel compound heterozygous DST variants causing hereditary sensory and autonomic neuropathies VI in twins of a Chinese family. Front. Genet. 11, 492 (2020).

PubMed  PubMed Central  Google Scholar 

Yoshioka, N. et al. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Dis. Model Mech. https://doi.org/10.1242/dmm.041608 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Young, K. G. & Kothary, R. Dystonin/Bpag1–a link to what? Cell Motil. Cytoskeleton 64, 897–905 (2007).

CAS  PubMed  Google Scholar 

Young, K. G. & Kothary, R. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons. Exp. Cell Res. 314, 2750–2761 (2008).

CAS  PubMed  Google Scholar 

Tseng, K. W., Peng, M. L., Wen, Y. C., Liu, K. J. & Chien, C. L. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice. J. Biomed. Sci. 18, 9 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Ryan, S. D. et al. Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Mol. Biol. Cell 23, 553–566 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Ferrier, A., Boyer, J. G. & Kothary, R. Cellular and molecular biology of neuronal dystonin. Int. Rev. Cell Mol. Biol. 300, 85–120 (2013).

CAS  PubMed  Google Scholar 

Ferrier, A. et al. Disruption in the autophagic process underlies the sensory neuropathy in Dystonia musculorum mice. Autophagy 11, 1025–1036 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Groves, R. W. et al. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J. Invest. Dermatol. 130, 1551–1557 (2010).

CAS  PubMed  Google Scholar 

Liu, L. et al. Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J. Invest. Dermatol. 132, 742–744 (2012).

CAS  PubMed  Google Scholar 

Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat. Genet. 10, 301–306 (1995).

CAS  PubMed  Google Scholar 

Scott, B. L. et al. Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat. Commun. 9, 419 (2018).

PubMed  PubMed Central  Google Scholar 

Nahorski, M. S. et al. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 138, 2147–2160 (2015).

PubMed  PubMed Central  Google Scholar 

Nahorski, M. S. et al. Clathrin heavy chain 22 contributes to the control of neuropeptide degradation and secretion during neuronal development. Sci. Rep. 8, 2340 (2018).

PubMed  PubMed Central  Google Scholar 

Riviere, J. B. et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 89, 219–230 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Lee, J. R. et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum. Mutat. https://doi.org/10.1002/humu.22709 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Nemani, T. et al. KIF1A-related disorders in children: a wide spectrum of central and peripheral nervous system involvement. J. Peripher. Nerv. Syst. 25, 117–124 (2020).

PubMed  Google Scholar 

Hirokawa, N. & Tanaka, Y. Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16–25 (2015).

CAS  PubMed  Google Scholar 

Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

CAS  PubMed  Google Scholar 

Sgro, A. E., Bajjalieh, S. M. & Chiu, D. T. Single-axonal organelle analysis method reveals new protein-motor associations. ACS Chem. Neurosci. 4, 277–284 (2013).

CAS  PubMed  Google Scholar 

Hummel, J. J. A. & Hoogenraad, C. C. Specific KIF1A-adaptor interactions control selective cargo recognition. J. Cell Biol. https://doi.org/10.1083/jcb.202105011 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Houlden, H. et al. A novel RAB7 mutation associated with ulcero-mutilating neuropathy. Ann. Neurol. 56, 586–590 (2004).

CAS  PubMed  Google Scholar 

Zhang, K. et al. Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J. Neurosci. 33, 7451–7462 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Ponomareva, O. Y., Eliceiri, K. W. & Halloran, M. C. Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Dev. 11, 2 (2016).

PubMed  PubMed Central  Google Scholar 

Lowe, H., Toyang, N., Steele, B., Bryant, J. & Ngwa, W. The endocannabinoid system: a potential target for the treatment of various diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179472 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA 98, 9371–9376 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Habib, A. M. et al. Microdeletion in a FAAH pseudogene identified in a patient with high anandamide concentrations and pain insensitivity. Br. J. Anaesth. 123, e249–e253 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif