Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective

Miura, N., Wanaka, A., Tohyama, M., & Tanaka, K. (1993). MFH-1, a new member of the fork head domain family, is expressed in developing mesenchyme. FEBS Letters, 326(1–3), 171–176. https://doi.org/10.1016/0014-5793(93)81785-X

CAS  Article  PubMed  Google Scholar 

Xue, Y., Cao, R., Nilsson, D., Chen, S., Westergren, R., Hedlund, E. M., et al. (2008). FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10167–10172. https://doi.org/10.1073/pnas.0802486105

Article  PubMed  PubMed Central  Google Scholar 

Hader, C., Marlier, A., & Cantley, L. (2010). Mesenchymal-epithelial transition in epithelial response to injury: The role of Foxc2. Oncogene, 29(7), 1031–1040. https://doi.org/10.1038/onc.2009.397

CAS  Article  PubMed  Google Scholar 

Motojima, M., Kume, T., & Matsusaka, T. (2017). Foxc1 and Foxc2 are necessary to maintain glomerular podocytes. Experimental Cell Research, 352(2), 265–272. https://doi.org/10.1016/J.YEXCR.2017.02.016

CAS  Article  PubMed  Google Scholar 

Cederberg, A., Gronning, L. M., Ahrén, B., Taskén, K., Carlsson, P., & Enerbäck, S. (2001). FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell, 106(5), 563–573. https://doi.org/10.1016/S0092-8674(01)00474-3

CAS  Article  PubMed  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

CAS  Article  PubMed  Google Scholar 

Hanahan, D. (2022). Hallmarks of Cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

CAS  Article  PubMed  Google Scholar 

Grønning, L. M., Cederberg, A., Miura, N., Enerbäck, S., & Taskén, K. (2002). Insulin and TNF alpha induce expression of the forkhead transcription factor gene Foxc2 in 3T3-L1 adipocytes via PI3K and ERK 1/2-dependent pathways. Molecular Endocrinology, 16(4), 873–883. https://doi.org/10.1210/MEND.16.4.0803

Article  PubMed  Google Scholar 

Paranjape, A. N., Soundararajan, R., Werden, S. J., Joseph, R., Taube, J. H., Liu, H., et al. (2016). Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene, 35(46), 5963–5976. https://doi.org/10.1038/onc.2015.498

CAS  Article  PubMed  PubMed Central  Google Scholar 

Christofides, A., Papagregoriou, G., Dweep, H., Makrides, N., Gretz, N., Felekkis, K., & Deltas, C. (2020). Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cellular and Molecular Life Sciences, 77(12), 2441–2459. https://doi.org/10.1007/S00018-019-03294-Z

CAS  Article  PubMed  Google Scholar 

Ge, J., Li, J., Na, S., Wang, P., Zhao, G., & Zhang, X. (2019). miR-548c-5p inhibits colorectal cancer cell proliferation by targeting PGK1. Journal of Cellular Physiology, 234(10), 18872–18878. https://doi.org/10.1002/JCP.28525

CAS  Article  PubMed  Google Scholar 

He, S. Z., & Wang, Q. (2020). MicroRNA-548c-5p inhibits the proliferation of breast cancer cells through regulating Wnt/β-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 24(7), 3795–3804. https://doi.org/10.26355/EURREV_202004_20845

Chen, C., Chen, Q., Wu, J., & Zou, H. (2021). H3K27ac-induced FOXC2-AS1 accelerates tongue squamous cell carcinoma by upregulating E2F3. Journal of OralPpathology & Medicine, 50(10), 1018–1030. https://doi.org/10.1111/JOP.13232

CAS  Article  Google Scholar 

Lim, Y. H., Ryu, J., Kook, H., & Kim, Y. K. (2020). Identification of long noncoding RNAs involved in differentiation and survival of vascular smooth muscle cells. Molecular Therapy Nucleic Acids, 22, 209–221. https://doi.org/10.1016/J.OMTN.2020.08.032

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang, C.-L., Zhu, K.-P., & Ma, X.-L. (2017). Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Letters, 396, 66–75. https://doi.org/10.1016/j.canlet.2017.03.018

CAS  Article  PubMed  Google Scholar 

Pan, K., & Xie, Y. (2020). LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca 2+-FAK signal pathway. Cell Death & Disease, 11(6), 434. https://doi.org/10.1038/S41419-020-2633-7

CAS  Article  Google Scholar 

Yan, J., Liu, J., Huang, Z., Huang, W., & Lv, J. (2021). FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells. Human Cell, 34(6), 1755–1764. https://doi.org/10.1007/S13577-021-00583-3

CAS  Article  PubMed  Google Scholar 

Gong, Y. Q., Ni, J. L., Fang, Q., & Li, T. (2020). MiR-1231 enhances docetaxel sensitivity to gallbladder carcinoma cells by downregulating FOXC2. European Review for Medical and Pharmacological Sciences, 24(23), 12116–12123. https://doi.org/10.26355/EURREV_202012_24000

Yan, M., Gao, H., Lv, Z., Liu, Y., Zhao, S., Gong, W., & Liu, W. (2020). Circular RNA PVT1 promotes metastasis via regulating of miR-526b/FOXC2 signals in OS cells. Journal of Cellular and Molecular Medicine, 24(10), 5593–5604. https://doi.org/10.1111/JCMM.15215

CAS  Article  PubMed  PubMed Central  Google Scholar 

Weng, Z., Peng, J., Wu, W., Zhang, C., Zhao, J., & Gao, H. (2021). Downregulation of PART1 inhibits proliferation and differentiation of Hep3B cells by targeting hsa-miR-3529-3p/FOXC2 axis. Journal of Oncology, 2021, 7792223. https://doi.org/10.1155/2021/7792223

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu, H., Zhang, Z., Han, Y., Fan, A., Liu, H., Zhang, X., et al. (2021). The FENDRR/FOXC2 axis contributes to multidrug resistance in gastric cancer and correlates with poor prognosis. Frontiers in Oncology, 11, 634579. https://doi.org/10.3389/FONC.2021.634579

Article  PubMed  PubMed Central  Google Scholar 

Bi, Y., Guo, S., Xu, X., Kong, P., Cui, H., Yan, T., et al. (2020). Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma. Cell Death & Disease, 11(4), 296. https://doi.org/10.1038/S41419-020-2492-2

CAS  Article  Google Scholar 

Shen, X., Zhao, K., Xu, L., Cheng, G., Zhu, J., Gan, L., et al. (2021). YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway. Frontiers in Genetics, 11, 592042. https://doi.org/10.3389/FGENE.2020.592042

Article  PubMed  PubMed Central  Google Scholar 

Missaglia, S., Tavian, D., Michelini, S., Maltese, P. E., Bonanomi, A., & Bertelli, M. (2021). Imbalance between expression of FOXC2 and its lncRNA in lymphedema-distichiasis caused by frameshift mutations. Genes, 12(5), 650. https://doi.org/10.3390/GENES12050650

CAS  Article  PubMed  PubMed Central  Google Scholar 

Golden, D., & Cantley, L. G. (2015). Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene, 34(36), 4702–4712. https://doi.org/10.1038/onc.2014.395

CAS  Article  PubMed  Google Scholar 

Ivanov, K. I., Agalarov, Y., Valmu, L., Samuilova, O., Liebl, J., Houhou, N., et al. (2013). Phosphorylation regulates FOXC2-mediated transcription in lymphatic endothelial cells. Molecular and Cellular Biology, 33(19), 3749–3761. https://doi.org/10.1128/MCB.01387-12

CAS  Article  PubMed  PubMed Central  Google Scholar 

Werden, S. J., Sphyris, N., Sarkar, T. R., Paranjape, A. N., LaBaff, A. M., Taube, J. H., et al. (2016). Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene, 35(46), 5977–5988. https://doi.org/10.1038/onc.2016.203

CAS  Article  PubMed  PubMed Central  Google Scholar 

Danciu, T. E., Chupreta, S., Cruz, O., Fox, J. E., Whitman, M., & Iñiguez-Lluhí, J. A. (2012). Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. The Journal of Biological Chemistry, 287(22), 18318–18329. https://doi.org/10.1074/JBC.M112.339424

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ren, Y. H., Liu, K. J., Wang, M., Yu, Y. N., Yang, K., Chen, Q., et al. (2014). De-SUMOylation of FOXC2 by SENP3 promotes the epithelial-mesenchymal transition in gastric cancer cells. Oncotarget, 5(16), 7093–7104. https://doi.org/10.18632/ONCOTARGET.2197

Wu, D., Ke, Y., Xiao, R., Liu, J., Li, Q., & Wang, Y. (2021). Long non-coding RNA GClnc1 knockdown suppresses progression of epithelial ovarian cancer by recruiting FOXC2 to disrupt the NOTCH1/NF-κB/Snail pathway. Experimental Cell Research, 399(1). https://doi.org/10.1016/J.YEXCR.2020.112422

Zhou, P., Li, Y., Di, R., Yang, Y., Meng, S., Song, F., & Ma, L. (2019). H19 and Foxc2 synergistically promotes osteogenic differentiation of BMSCs via Wnt-β-catenin pathway. Journal of Cellular Physiology, 234(8), 13799–13806. https://doi.org/10.1002/JCP.28060

CAS  Article  PubMed  Google Scholar 

Kume, T., & Shackour, T. (2018). Meta-analysis of the likelihood of FOXC2 expression in earlyand late-stage tumors. Oncotarget, 9(70), 33396–33402. https://doi.org/10.18632/oncotarget.26087

Li, Y., Yang, W., Yang, Q., & Zhou, S. (2012). Nuclear localization of GLI1 and elevated expression of FOXC2 in breast cancer is associated with the basal-like phenotype. Histology and Histopathology, 27(4), 475–84. https://doi.org/10.14670/HH-27.475

Li, Q., Wu, J., Wei, P., Xu, Y., Zhuo, C., Wang, Y., et al. (2015). Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition. American Journal of Cancer Research, 5(6), 2022–34. http://www.ncbi.nlm.nih.gov/pubmed/26269761

Jiang, W., Fan, H., Qian, C., Ding, J., Wang, Q., & Pang, X. (2016). Prognostic value of high FoxC2 expression in resectable non-small cell lung cancer, alone or in combination with E-cadherin expression. BMC Cancer, 16(1), 16. https://doi.org/10.1186/s12885-016-2056-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shimoda, Y., Ubukata, Y., Handa, T., Yokobori, T., Watanabe, T., Gantumur, D., et al. (2018). High expression of forkhead box protein C2 is associated with aggressive phenotypes and poor prognosis in clinical hepatocellular carcinoma. BMC Cancer, 18(1), 597. https://doi.org/10.1186/s12885-018-4503-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Børretzen, A., Gravdal, K., Haukaas, S. A., Beisland, C., Akslen, L. A., & Halvorsen, O. J. (2019). FOXC2 expression and epithelial–mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer. The Journal of Pathology: Clinical Research, 5(4), 272–286. https://doi.org/10.1002/cjp2.142

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhu, J.-L., Song, Y.-X., Wang, Z.-N., Gao, P., Wang, M.-X., Dong, Y.-L., et al. (2013). The clinical significance of mesenchyme forkhead 1 (FoxC2) in gastric carcinoma. Histopathology, 62(7), 1038–1048. https://doi.org/10.1111/his.12132

Article  PubMed  Google Scholar 

Xu, B., Tian, Y., & Liu, L. (2020). Meta-analysis of the prognostic significance of FOXC2 in various tumors. The Journal of International Medical Research, 48(

留言 (0)

沒有登入
gif