Mesenchymal Stem Cells Attenuate Acute Lung Injury in Mice Partly by Suppressing Alveolar Macrophage Activation in a PGE2-Dependent Manner

Wheeler, A.P., and G.R. Bernard. 2007. Acute lung injury and the acute respiratory distress syndrome: A clinical review. The Lancet 369: 1553–1564.

Article  Google Scholar 

Xu B, S.S. Chen, M.Z. Liu, C.X. Gan, J.Q. Li, and G.H. Guo. 2020. Stem cell derived exosomes-based therapy for acute lung injury and acute respiratory distress syndrome: a novel therapeutic strategy. Life Sci 254: 117766.

Zheng, Y., J. Liu, P. Chen, L. Lin, Y. Luo, X. Ma, J. Lin, Y. Shen, and L. Zhang. 2021. Exosomal miR-22–3p from human umbilical cord blood-derived mesenchymal stem cells protects against lipopolysaccharid-induced acute lung injury. Life Sci 269: 119004.

Allard, B., A. Panariti, and J.G. Martin. 2018. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Frontiers in Immunology 9: 1777.

Article  Google Scholar 

Hussell, T., and T.J. Bell. 2014. Alveolar macrophages: Plasticity in a tissue-specific context. Nature Reviews Immunology 14: 81–93.

CAS  Article  Google Scholar 

Neupane. A.S., M. Willson, A.K. Chojnacki, E.S.C.F. Vargas, C. Morehouse, A. Carestia, A.E. Keller, M. Peiseler, A. DiGiandomenico, M.M. Kelly, M. Amrein, C. Jenne, A. Thanabalasuriar, and P. Kubes. 2020. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183:110–125 e11.

Johnston, L.K., C.R. Rims, S.E. Gill, J.K. McGuire, and A.M. Manicone. 2012. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. American Journal of Respiratory Cell and Molecular Biology 47: 417–426.

CAS  Article  Google Scholar 

Thomas, N.J., D. Spear, E. Wasserman, S. Pon, B. Markovitz, A.R. Singh, S. Li, S.J. Gertz, C.M. Rowan, A. Kunselman, R.F. Tamburro, C.S. Investigators, and I the Pediatric Acute Lung and N Sepsis Investigators. 2018. CALIPSO: A randomized controlled trial of calfactant for acute lung injury in pediatric stem cell and oncology patients. Biology of Blood and Marrow Transplantation 24: 2479–2486.

CAS  Article  Google Scholar 

Sun, J., X. Ding, S. Liu, X. Duan, H. Liang, and T. Sun. 2020. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Research & Therapy 11: 384.

CAS  Article  Google Scholar 

Deng, H., L. Wu, M. Liu, L. Zhu, Y. Chen, H. Zhou, X. Shi, J. Wei, L. Zheng, X. Hu, M. Wang, Z. He, X. Lv, and H. Yang. 2020. Bone marrow mesenchymal stem cell-derived exosomes attenuate LPS-induced ARDS by modulating macrophage polarization through inhibiting glycolysis in macrophages. Shock 54: 828–843.

CAS  Article  Google Scholar 

Park, H.J., J. Kim, F.T. Saima, K.J. Rhee, S. Hwang, M.Y. Kim, S.K. Baik, Y.W. Eom, and H.S. Kim. 2018. Adipose-derived stem cells ameliorate colitis by suppression of inflammasome formation and regulation of M1-macrophage population through prostaglandin E2. Biochemical and Biophysical Research Communications 498: 988–995.

CAS  Article  Google Scholar 

Wang, J., Y. Liu, H. Ding, X. Shi, and H. Ren. 2021. Mesenchymal stem cell-secreted prostaglandin E2 ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization. Stem Cell Research & Therapy 12: 15.

Article  Google Scholar 

Wang, B., Y. Lin, Y. Hu, W. Shan, S. Liu, Y. Xu, H. Zhang, S. Cai, X. Yu, Z. Cai, and H. Huang. 2017. mTOR inhibition improves the immunomodulatory properties of human bone marrow mesenchymal stem cells by inducing COX-2 and PGE2. Stem Cell Research & Therapy 8: 292.

Article  Google Scholar 

Wang, Y., X. Chen, W. Cao, and Y. Shi. 2014. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology 15: 1009–1016.

CAS  Article  Google Scholar 

Liu, Y., H. Ren, J. Wang, F. Yang, J. Li, Y. Zhou, X. Yuan, W. Zhu, and X. Shi. 2019. Prostaglandin E2 secreted by mesenchymal stem cells protects against acute liver failure via enhancing hepatocyte proliferation. The FASEB Journal 33: 2514–2525.

CAS  Article  Google Scholar 

An, J.H., W.J. Song, Q. Li, S.M. Kim, J.I. Yang, M.O. Ryu, A.R. Nam, D.H. Bhang, Y.C. Jung, and H.Y. Youn. 2018. Prostaglandin E2 secreted from feline adipose tissue-derived mesenchymal stem cells alleviate DSS-induced colitis by increasing regulatory T cells in mice. BMC Veterinary Research 14: 354.

CAS  Article  Google Scholar 

Harrison, M.A.A., R.M. Wise, B.P. Benjamin, E.M. Hochreiner, O.A. Mohiuddin, and B.A. Bunnell. 2021. Adipose-derived stem cells from obese donors polarize macrophages and microglia toward a pro-inflammatory phenotype. Cells 10.

Zhang, Z., X. Zou, R. Zhang, Y. Xie, Z. Feng, F. Li, J. Han, H. Sun, Q. Ouyang, S. Hua, B. Lv, T. Hua, Z. Liu, Y. Cai, Y. Zou, Y. Tang, and X. Jiang. 2021. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging-Us 13: 3060–3079.

CAS  Article  Google Scholar 

Al-Rubaie, A., A.F. Wise, F. Sozo, R. De Matteo, C.S. Samuel, R. Harding, and S.D. Ricardo. 2018. The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respiratory Research 19: 114.

Article  Google Scholar 

Zhu, H.X., J.L. Gao, M.M. Zhao, R. Li, Y.X. Tian, X. Wang, J. Zhang, J.X. Yuan, and J.Z. Cui. 2016. Effects of bone marrow-derived mesenchymal stem cells on the autophagic activity of alveolar macrophages in a rat model of silicosis. Experimental and Therapeutic Medicine 11: 2577–2582.

CAS  Article  Google Scholar 

Li, D., C. Wang, C. Chi, Y. Wang, J. Zhao, J. Fang, and J. Pan. 2016. Bone marrow mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory reactions in macrophages and endothelial cells. Mediators of Inflammation 2016: 2631439.

PubMed  PubMed Central  Google Scholar 

Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.

CAS  Article  Google Scholar 

Yap, J., H.A. Cabrera-Fuentes, J. Irei, D.J. Hausenloy, and W.A. Boisvert. 2019. Role of macrophages in cardioprotection. International Journal of Molecular Sciences 20.

Sun, Y., X. Xiong, and X. Wang. 2020. The miR-590-3p/VEGFA axis modulates secretion of VEGFA from adipose-derived stem cells, which acts as a paracrine regulator of human dermal microvascular endothelial cell angiogenesis. Human Cell 33: 479–489.

CAS  Article  Google Scholar 

Tang, Z., X. Wu, L. Hue, Y. Xiao, J. Tang, S. Zuo, M. Shen, and X. Yuan. 2020. Circ-100290 positively regulates angiogenesis induced by conditioned medium of human amnion-derived mesenchymal stem cells through miR-449a/eNOS and miR-449a/VEGFA axes. International Journal of Biological Sciences 16: 2131–2144.

CAS  Article  Google Scholar 

Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175.

CAS  Article  Google Scholar 

Kim, N., and S.-G. Cho. 2016. Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications. International Journal of Hematology 103: 129–137.

CAS  Article  Google Scholar 

Nemeth, K., A. Leelahavanichkul, P.S.T. Yuen, B. Mayer, A. Parmelee, K. Doi, P.G. Robey, K. Leelahavanichkul, B.H. Koller, J.M. Brown, X. Hu, I. Jelinek, R.A. Star, and E. Mezey. 2009. Bone marrow stromal cells attenuate sepsis via prostaglandin E-2-dependent reprogramming of host macrophages to increase their interleukin-10 production (vol 15, pg 42, 2009). Nature Medicine 15: 462–462.

CAS  Article  Google Scholar 

Gu, W., L Song, X.-M. Li, D. Wang, X.-J. Guo, and W.-G. Xu. 2015. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Scientific Reports 5.

留言 (0)

沒有登入
gif