Loss of H3K27me3 in WHO grade 3 meningioma

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20(suppl_4):iv1–iv86. https://doi.org/10.1093/neuonc/noy131

Article  PubMed  PubMed Central  Google Scholar 

Louis D, Ohgaki H, Wiestler O, Cavenee W (2016) WHO Classification of Tumours of the Central Nervous System. 4th editio. International Agency for Research on Cancer. World Health Organization

WHO Classification of Tumours Editorial Board (2021) World Health Organization Classification of Tumours of the Central Nervous System. 5th ed.

Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

CAS  Article  PubMed  Google Scholar 

Maier AD, Bartek J, Eriksson F et al (2019) Clinical and histopathological predictors of outcome in malignant meningioma. Neurosurg Rev. https://doi.org/10.1007/s10143-019-01093-5

Article  PubMed  Google Scholar 

Mirian C, Duun-Henriksen AK, Juratli T et al (2020) Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2019-322257

Article  PubMed  Google Scholar 

Sievers P, Hielscher T, Schrimpf D et al (2020) CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathol 140(3):409–413. https://doi.org/10.1007/s00401-020-02188-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rogers L, Barani I, Chamberlain M et al (2015) Meningiomas: knowledge base, treatment outcomes, and uncertainties. a RANO review. J Neurosurg 122(1):4–23. https://doi.org/10.3171/2014.7.JNS131644

Article  PubMed  PubMed Central  Google Scholar 

Das P, Taube JH (2020) Regulating methylation at h3k27: a trick or treat for cancer cell plasticity. Cancers (Basel) 12(10):1–33. https://doi.org/10.3390/cancers12102792

CAS  Article  Google Scholar 

Filipski K, Braun Y, Zinke J et al (2019) Lack of H3K27 trimethylation is associated with 1p/19q codeletion in diffuse gliomas. Acta Neuropathol 138(2):331–334. https://doi.org/10.1007/s00401-019-02025-9

Article  PubMed  PubMed Central  Google Scholar 

Schaefer IM, Fletcher CDM, Hornick JL (2016) Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol 29(1):4–13. https://doi.org/10.1038/modpathol.2015.134

CAS  Article  PubMed  Google Scholar 

Funato K, Major T, Lewis PW, Allis CD, Tabar V (2014) Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science (80–) 346(6216):1529–1533. https://doi.org/10.1126/science.1253799

CAS  Article  Google Scholar 

Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400–5413. https://doi.org/10.1038/sj.onc.1205651

CAS  Article  PubMed  Google Scholar 

Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130(6):815–827. https://doi.org/10.1007/s00401-015-1478-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Harutyunyan AS, Chen H, Lu T et al (2020) H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep 33(7):108390. https://doi.org/10.1016/j.celrep.2020.108390

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bracken AP (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335. https://doi.org/10.1093/emboj/cdg542

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wei Y, Xia W, Zhang Z et al (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47(9):701–706. https://doi.org/10.1002/mc.20413

CAS  Article  PubMed  PubMed Central  Google Scholar 

Röhrich M, Koelsche C, Schrimpf D et al (2016) Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathol 131(6):877–887. https://doi.org/10.1007/s00401-016-1540-6

CAS  Article  PubMed  Google Scholar 

Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah6904

Article  PubMed  PubMed Central  Google Scholar 

Santagata S, Ligon KL (2021) Prognostication for meningiomas: H3K27me3 to the rescue? Neuro Oncol. https://doi.org/10.1093/neuonc/noab083

Article  PubMed  PubMed Central  Google Scholar 

Nassiri F, Wang JZ, Singh O et al (2021) Loss of H3K27me3 in meningiomas. Neuro Oncol. https://doi.org/10.1093/neuonc/noab036

Article  PubMed  PubMed Central  Google Scholar 

Katz LM, Hielscher T, Liechty B et al (2018) Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1844-9

Article  PubMed  Google Scholar 

Gauchotte G, Peyre M, Pouget C et al (2020) Prognostic value of histopathological features and loss of H3K27me3 immunolabeling in anaplastic meningioma: a multicenter retrospective study. J Neuropathol Exp Neurol 79(7):754–762. https://doi.org/10.1093/jnen/nlaa038

CAS  Article  PubMed  Google Scholar 

Behling F, Fodi C, Gepfner-Tuma I et al (2020) H3K27me3 loss indicates an increased risk of recurrence in the Tübingen meningioma cohort. Neuro Oncol 2020:1–9. https://doi.org/10.1093/neuonc/noaa303

Article  Google Scholar 

Jung M, Kim SI, Lim KY et al (2021) The substantial loss of H3K27me3 can stratify risk in grade 2, but not in grade 3 meningioma. Hum Pathol 115(800):96–103. https://doi.org/10.1016/j.humpath.2021.06.005

CAS  Article  PubMed  Google Scholar 

Katz LM, Hielscher T, Liechty B et al (2018) Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol 135(6):955–963. https://doi.org/10.1007/s00401-018-1844-9

CAS  Article  PubMed  Google Scholar 

Ammendola S, Barresi V (2022) Timing of H3K27me3 loss in secondary anaplastic meningiomas. Brain Tumor Pathol 3(0123456789):21–23. https://doi.org/10.1007/s10014-021-00422-1

CAS  Article  Google Scholar 

Maier AD, Stenman A, Svahn F et al (2021) TERT promoter mutations in primary and secondary WHO grade III meningioma. Brain Pathol 31(1):61–69. https://doi.org/10.1111/bpa.12892

CAS  Article  PubMed  Google Scholar 

R Core Team. R: A language and environment for statistical computing. R Found Stat Comput. Published online 2020. https://www.r-project.org/

Schaefer IM, Minkovsky A, Hornick JL (2016) H3K27me3 immunohistochemistry highlights the inactivated X chromosome (Xi) and predicts sex in non-neoplastic tissues. Histopathology 69(4):702–704. https://doi.org/10.1111/his.12972

Article  PubMed  Google Scholar 

Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S (2019) Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science (80–) 363(6432):1222–1226. https://doi.org/10.1126/science.aau5870

CAS  Article  Google Scholar 

Lewis PW, Müller MM, Koletsky MS et al (2011) Inhibition of PRC2 activity by a gain-of-function h3 mutation found in pedriatic glioblastoma. Science (80–) 23(1):1–7. https://doi.org/10.1126/science.1232245.Inhibition

Article  Google Scholar 

留言 (0)

沒有登入
gif