The role of CCNs in controlling cellular communication in the tumor microenvironment

Ahmed KA, Hasib TA, Paul SK, Saddam M, Mimi A, Saikat ASM, Faruque HA, Rahman MA, Uddin MJ, Kim B (2021) Potential role of CCN proteins in breast cancer: therapeutic advances and perspectives. Curr Oncol 28:4972–4985. https://doi.org/10.3390/curroncol28060417

Article  PubMed  PubMed Central  Google Scholar 

Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 95:6355–6360. https://doi.org/10.1073/pnas.95.11.6355

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baguma-Nibasheka M, Kablar B (2008) Pulmonary hypoplasia in the connective tissue growth factor (CTGF) null mouse. Dev Dyn 237:485–493. https://doi.org/10.1002/dvdy.21433

CAS  Article  PubMed  Google Scholar 

Banerjee SK, Banerjee S (2012) CCN5/WISP-2: a micromanager of breast cancer progression. J Cell Commun Signal 6:63–71. https://doi.org/10.1007/s12079-012-0158-2

Article  PubMed  PubMed Central  Google Scholar 

Banerjee S, Dhar G, Haque I, Kambhampati S, Mehta S, Sengupta K, Tawfik O, Phillips TA, Banerjee SK (2008) CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 68:7606–7612. https://doi.org/10.1158/0008-5472.CAN-08-1461

CAS  Article  PubMed  Google Scholar 

Banerjee S, Ghosh A, VonHoff DD, Banerjee SK (2019) Cyr61/CCN1 targets for chemosensitization in pancreatic cancer. Oncotarget 10:3579–3580. https://doi.org/10.18632/oncotarget.26986

Article  PubMed  PubMed Central  Google Scholar 

Banerjee SK, Maity G, Haque I, Ghosh A, Sarkar S, Gupta V, Campbell DR, Von Hoff D, Banerjee S (2016) Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 10:207–216. https://doi.org/10.1007/s12079-016-0343-9

Article  PubMed  PubMed Central  Google Scholar 

Banerjee S, Saxena N, Sengupta K, Tawfik O, Mayo MS, Banerjee SK (2003) WISP-2 gene in human breast cancer: estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia 5:63–73. https://doi.org/10.1016/s1476-5586(03)80018-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Benini S, Perbal B, Zambelli D, Colombo MP, Manara MC, Serra M, Parenza M, Martinez V, Picci P, Scotlandi K (2005) In Ewing’s sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 24:4349–4361. https://doi.org/10.1038/sj.onc.1208620

CAS  Article  PubMed  Google Scholar 

Brown BA, Connolly GM, Mill CEJ, Williams H, Angelini GD, Johnson JL, George SJ (2019) Aging differentially modulates the Wnt pro-survival signalling pathways in vascular smooth muscle cells. Aging Cell 18:e12844. https://doi.org/10.1111/acel.12844

CAS  Article  PubMed  Google Scholar 

Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18:84. https://doi.org/10.1186/s13058-016-0740-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen PC, Cheng HC, Yang SF, Lin CW, Tang CH (2014) The CCN family proteins: modulators of bone development and novel targets in bone-associated tumors. Biomed Res Int 2014:437096. https://doi.org/10.1155/2014/437096

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen R, Masuo K, Yogo A, Yokoyama S, Sugiyama A, Seno H, Yoshizawa A, Takaishi S (2021) SNAIL regulates gastric carcinogenesis through CCN3 and NEFL. Carcinogenesis 42:190–201. https://doi.org/10.1093/carcin/bgaa133

CAS  Article  PubMed  Google Scholar 

Delmolino LM, Stearns NA, Castellot JJ Jr (2001) COP-1, a member of the CCN family, is a heparin-induced growth arrest specific gene in vascular smooth muscle cells. J Cell Physiol 188:45–55. https://doi.org/10.1002/jcp.1100

CAS  Article  PubMed  Google Scholar 

Dhar K, Banerjee S, Dhar G, Sengupta K, Banerjee SK (2007b) Insulin-like growth factor-1 (IGF-1) induces WISP-2/CCN5 via multiple molecular cross-talks and is essential for mitogenic switch by IGF-1 axis in estrogen receptor-positive breast tumor cells. Cancer Res 67:1520–1526. https://doi.org/10.1158/0008-5472.CAN-06-3753

CAS  Article  PubMed  Google Scholar 

Dhar G, Banerjee S, Dhar K, Tawfik O, Mayo MS, Vanveldhuizen PJ, Banerjee SK (2008) Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2. Cancer Res 68:4580–4587. https://doi.org/10.1158/0008-5472.CAN-08-0316

CAS  Article  PubMed  Google Scholar 

Dhar G, Mehta S, Banerjee S, Gardner A, McCarty BM, Mathur SC, Campbell DR, Kambhampati S, Banerjee SK (2007a) Loss of WISP-2/CCN5 signaling in human pancreatic cancer: a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett 254:63–70. https://doi.org/10.1016/j.canlet.2007.02.012

CAS  Article  PubMed  Google Scholar 

Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901. https://doi.org/10.1016/j.devcel.2010.05.012

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gascard P, Tlsty TD (2016) Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30:1002–1019. https://doi.org/10.1101/gad.279737.116

CAS  Article  PubMed  PubMed Central  Google Scholar 

Giusti V, Scotlandi K (2021) CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 15:545–566. https://doi.org/10.1007/s12079-021-00631-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K, Ghosh A, Siahaan TJ, Banerjee S, Banerjee SK (2019) Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal 13:319–330. https://doi.org/10.1007/s12079-018-0492-0

CAS  Article  PubMed  Google Scholar 

Gurbuz I, Chiquet-Ehrismann R (2015) CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol 62:142–146. https://doi.org/10.1016/j.biocel.2015.03.007

CAS  Article  PubMed  Google Scholar 

Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, Jha SS, McGragor D, Banerjee SK (2014) CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27 via Skp2 and FOXO3a regulation. Oncogene. https://doi.org/10.1038/onc.2014.250

Article  PubMed  Google Scholar 

Harris J, Chess R (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discovery 2:214–221. https://doi.org/10.1038/nrd1033

CAS  Article  PubMed  Google Scholar 

Huang J, Bonduelle C, Thévenot J, Lecommandoux S, Heise A (2012) Biologically active polymersomes from amphiphilic glycopeptides. J Am Chem Soc 134:119–122. https://doi.org/10.1021/ja209676p

CAS  Article  PubMed  Google Scholar 

Huang A, Li H, Zeng C, Chen W, Wei L, Liu Y, Qi X (2020) Endogenous CCN5 participates in angiotensin II/TGF-beta1 networking of cardiac fibrosis in high angiotensin II-induced hypertensive heart failure. Front Pharmacol 11:1235. https://doi.org/10.3389/fphar.2020.01235

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang W, Zhang Y, Varambally S, Chinnaiyan AM, Banerjee M, Merajver SD, Kleer CG (2008) Inhibition of CCN6 (Wnt-1-induced signaling protein 3) down-regulates E-cadherin in the breast epithelium through induction of snail and ZEB1. Am J Pathol 172:893–904. https://doi.org/10.2353/ajpath.2008.070899

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hutchenreuther J, Vincent KM, Carter DE, Postovit LM, Leask A (2015) CCN2 expression by tumor stroma is required for melanoma metastasis. J Invest Dermatol 135:2805–2813. https://doi.org/10.1038/jid.2015.279

CAS  Article  PubMed  Google Scholar 

Hutchenreuther J, Vincent K, Norley C, Racanelli M, Gruber SB, Johnson TM, Fullen DR, Raskin L, Perbal B, Holdsworth DW et al (2018) Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma. Matrix Biol 74:52–61. https://doi.org/10.1016/j.matbio.2018.06.003

CAS  Article  PubMed  Google Scholar 

Itaka K, Yamauchi K, Harada A, Nakamura K, Kawaguchi H, Kataoka K (2003) Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials 24:4495–4506

CAS  Article  Google Scholar 

Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791. https://doi.org/10.1242/dev.00505

CAS  Article  PubMed  Google Scholar 

Jeong D, Lee MA, Li Y, Yang DK, Kho C, Oh JG, Hong G, Lee A, Song MH, LaRocca TJ et al (2016) Matricellular protein CCN5 reverses established cardiac fibrosis. J Am Coll Cardiol 67:1556–1568. https://doi.org/10.1016/j.jacc.2016.01.030

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jia Q, Xu B, Zhang Y, Ali A, Liao X (2021) CCN family proteins in cancer: insight into their structures and coordination role in tumor microenvironment. Front Genet 12:649387. https://doi.org/10.3389/fgene.2021.649387

CAS  Article  PubMed  PubMed Central  Google Scholar 

Joliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M, Crochet J, Perbal B (1992) Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol 12:10–21. https://doi.org/10.1128/mcb.12.1.10-21.1992

CAS 

留言 (0)

沒有登入
gif