Efficiency of 124I radioisotope production from natural and enriched tellurium dioxide using 124Te(p,xn)124I reaction

Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng. 2015;17:385–414.

CAS  Article  Google Scholar 

Happel C, Kranert WT, Ackermann H, Binse I, Bockisch B, Gröner D, Herrmann K, Grüwald F. Thyroid stunning in radioiodine-131 therapy of benign thyroid diseases. Endocrine. 2019;63:537–44.

CAS  Article  Google Scholar 

Foss CA, Plyku D, Ordonez AA, Sanchez-Bautista J, Rosenthal HB, Il Minn, Lodge MA, Pomper MG, Sgouros G, Jain AK. Biodistribution and radiation dosimetry of 124 I-DPA-713, a PET radiotracer for macrophage-associated inflammation. J Nuclear Med. 2018;59:1751–6.

CAS  Article  Google Scholar 

Kumar K, Ghosh A. Radiochemistry, production process, labeling, methods and immunoPET imaging pharmaceuticals of iodine-124. Molecules. 2021;26(2):414.

CAS  Article  Google Scholar 

Hendrikse H, Kiss O, Kunikowska J, Wadsak W, Decristoforo C, Patt M. EANM position on the in-house preparation of radiopharmaceuticals. Eur J Nuclear Med Mol Imaging. 2022;1:1.

Google Scholar 

Cascini GL, Asabella AN, Notaristefano A, Restuccia A, Ferrari C, Rubini D, Altini C, Rubini G. 124Iodine: a longer-life positron emitter isotope-new opportunities in molecular imaging. BioMed Res Int. 2014;1:5.

Google Scholar 

Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys. 1991;18(3):357–66.

CAS  Article  Google Scholar 

IAEA. Radioisotopes and Radiopharmaceuticals Reports No. 1. Cyclotron Produced Radionuclides: Emerging Positron Emitters for Medical Applications: 64Cu and 124I. 2016.

Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686–718.

CAS  Article  Google Scholar 

Braghirolli AMS, Waissmann W, da Silva JB, Santos GR. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isotopes. 2014;90:138–48.

CAS  Article  Google Scholar 

Lambrecht RM, Sajjad M, Qureshi MA, Al Yanbawi SJ. Production of iodine-124. Radioanal Nucl Chem Lett. 1988;127:143–50.

CAS  Article  Google Scholar 

Firouzbakht ML, Schlyer V, Finn RD, Laguzzi G, Wolf AP. Iodine-124 production: excitation functions for the 124Te(d,2n)124I and 124Te(d,3n)123I reactions from 7 to 24 MeV. Nucl Instrum Methods B. 1993;79:909–10.

Article  Google Scholar 

Weinreich R, Knust EJ. Quality assurance of iodine-124 produced via the nuclear reaction Te-124(d,2n)I-124. Radioanal Nucl Chem Lett. 1996;213:253–61.

CAS  Article  Google Scholar 

Clem RG, Lambrecht RM. Enriched Te-124 targets for production of I-123 and I-124. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detectors Assoc Equip. 1991;303:115–8.

Article  Google Scholar 

Bastian T, Coenen HH, Qaim SM. Excitation functions of Te-124(d, xn)I- 124, I-125 reactions from threshold up to 14MeV:comparative evaluation of nuclear routes for the production of I-124. Appl Radiat Isot. 2001;55:303–8.

CAS  Article  Google Scholar 

Sheh Y, Koziorowski J, Balatoni J, Lom C, Dahl JR, Finn RD. Low energy cyclotron production and chemical separation of “no carrier added’’ iodine-124 from a, reusable, enriched tellurium-124 dioxide. Radiochimica Acta. 2000;88(3):169.

CAS  Article  Google Scholar 

Qaim SM, Hohn A, Bastian T, El-Azoney KM, Blessing G, Spellerberg S. Some optimization studies relevant to the production of high-purity I-124 and I-120g at a small-sized cyclotron. Appl Radiat Isot. 2003;58:49–78.

Article  Google Scholar 

Glaser M, Mackay DB, Ranicar ASO, Waters SL, Brady F, Luthra SK. Improved targetry and production of iodine-124 for PET studies. Radiochem Acta. 2004;92:951–6.

CAS  Article  Google Scholar 

Scholten B, Kovacs Z, Tarkanyi F, Qaim SM. Excitation functions of 124Te (p, xn)124, 123I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl Radiat Isot. 1995;46:255–9.

CAS  Article  Google Scholar 

IAEA. Technical Reports Series no. 468. Vienna, 2009.

Allison J, Amako K, Apostolakis J, Araujo H, Arce Dubois P, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, Cirrone GAP, Cooperman G, Cosmo G, Cuttone G, Daquino GG, Donszelmann M, Dressel M, Folger G, Foppiano F, Generowicz J, Grichine V, Guatelli S, Gumplinger P, Heikkinen A, Hrivnacova I, Howard A, Incerti S, Ivanchenko V, Johnson T, Jones F, Koi T, Kokoulin R, Kossov M, Kurashige H, Lara V, Larsson S, Lei F, Link O, Longo F, Maire M, Mantero A, Mascialino B, McLaren I, Mendez Lorenzo P, Minamimoto K, Murakami K, Nieminen P, Pandola L, Parlati S, Peralta L, Perl J, Pfeiffer A, Pia MG, Ribon A, Rodrigues P, Russo G, Sadilov S, Santin G, Sasaki T, Smith D, Starkov N, Tanaka S, Tcherniaev E, Tome B, Trindade A, Truscott P, Urban L, Verderi M, Walkden A, Wellisch JP, Williams DC, Wright D, Yoshida H. Geant4 developments and applications. IEEE Trans Nuclear Sci. 2006;53:270–8.

Article  Google Scholar 

Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal Ph, Cano-Ott D, Chauvie S, Cho K, Cirrone GAP, Cooperman G, Cortés-Giraldo MA, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira VD, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser KL, Grichine VM, Guatelli S, Guèye P, Gumplinger P, Howard AS, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko VN, Jones FW, Jun SY, Kaitaniemi P, Karakatsanis N, Karamitrosi M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee SB, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia MG, Pokorski W, Quesada JM, Raine M, Reis MA, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin JI, Strakovsky II, Taborda A, Tanaka S, Tomé B, Toshito T, Tran HN, Truscott PR, Urban L, Uzhinsky V, Verbeke JM, Verderi M, Wendt BL, Wenzel H, Wright DH, Wright DM, Yamashita T, Yarba J, Yoshida H. Recent developments in GEANT4. Nuclear Inst Methods Phys Res. 2016;835:186–225.

CAS  Article  Google Scholar 

...Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D, GEANT4 Collaboration. GEANT4-a simulation toolkit. Nuclear Inst Methods Phys Res. 2003;506:250–303.

CAS  Article  Google Scholar 

Ziegler JF. Interactions of ions with matter 2013. http://www.srim.org/. Accessed 12 May 2021.

Poignant F, Penfold S, Asp J, Takhar P, Jackson P. GEANT4 simulation of cyclotron radioisotope production in a solid target. Physica Medica. 2016;32(5):728–34.

CAS  Article  Google Scholar 

Poniger SS, Tochon-Danguy HJ, Panopoulos HP, O’Keefe GJ, Peake D, Rasool R, Scott AM. Automated production of 124I and 64Cu using IBA Terimo and Pinctada metal electroplating and processing modules. AIP Conf Proc. 2012;1509:114–9.

CAS  Article  Google Scholar 

Tagiara NS, Palles D, Simandiras ED, Psycharis V, Kyritsis A, Kamitsos EI. Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J Non-Cryst Solids. 2017;457:116–25.

CAS  Article  Google Scholar 

Marple MAT, Jesuit M, Hung I, Gan Z, Feller S, Sen S. Structure of TeO2 glass: results from 2D 125Te NMR spectroscopy. J Non-Cryst Solids. 2019;513:183–90.

CAS  Article  Google Scholar 

IAEA. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions Final report of a co-ordinated research project. 2001.

Alternative Radionuclide Production with a Cyclotron. Number 4 in Radioisotopes and Radiopharmaceuticals Reports. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2021.

European Pharmacopoeia 10th edition Volume I Implementation: 01/2020. The European Directorate for the Quality of Medicines & HealthCare (EDQM).

Saha GB. Quality control of radiopharmaceuticals. Cham: Springer International Publishing; 2018. p. 163–83.

Google Scholar 

Joseph CH. Chapter 14: Quality control of radiopharmaceuticals. In: Radiopharmaceuticals in nuclear pharmacy and nuclear medicine, 4th Edition, 2020.

Balatoni J, Finn R, Blasberg R, Tjuvajev J, Larson S. Production and quality assurance of cyclotron produced iodine-124 from enriched tellurium targets. In: The fifteenth international conference on the application of accelerators in research and industry. AIP Conference Proceedings, vol 475, pp 984–986 (1999).

Turner JE. Atoms, radiation, and radiation protection. New York: Wiley; 1995.

Google Scholar 

Jentzen W, Richter M, Nagarajah J, Poeppel TD, Brandau W, Dawes C, Bockisch A, Binse I. Chewing-gum stimulation did not reduce the absorbed dose to salivary glands during radioiodine treatment of thyroid cancer as inferred from pre-therapy 124I PET/CT imaging. EJNMMI Phys. 2014;1:100.

Article  Google Scholar 

Fanchon LM, Beattie BJ, Pentlow K, Larson SM, Humm JL. Optimizing reconstruction parameters for quantitative 124I-PET in the presence of therapeutic doses of 131I. EJNMMI Phys. 2021;8:50.

Article  Google Scholar 

Jentzen W, Phaosricharoen J, Gomez B, Hetkamp P, Stebner V, Binse I, Kinner S, Herrmann K, Sabet A, Nagarajah J. Quantitative performance of 124I PET/MR of neck lesions in thyroid cancer patients using 124I PET/CT as reference. EJNMMI Phys. 2018;5:13.

Article  Google Scholar 

Kersting D, Jentzen W, Sraieb M, Costa PF, Conti M, Umutlu L, Antoch G, Herrmann K, Nader M, Fendler WP, Rischpler C, Weber M. Comparing lesion detection efficacy and image quality across different PET system generations to optimize the iodine-124 PET protocol for recurrent thyroid cancer. EJNMMI Phys. 2021;8:14.

Article  Google Scholar 

Roelcke U, Hausmann O, Merlo A, Missimer J, Maguire RP, Freitag P, Radü EW, Weinreich R, Gratzl O, Leenders KL. PET imaging drug distribution after intratumoral injection: the case for 124-I. J Nucl Med. 2002;43:1444–51.

CAS  PubMed  Google Scholar 

Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, Finn RD, Jordan K, Kalaigian H, Karp JS, Robeson WR, Larson SM. Quantitative imaging of Iodine-124 with PET. J Nucl Med. 1996;37:1557–62.

CAS  PubMed  Google Scholar 

Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Görges R, Mülle SP, Bockisch A, Debatin JF, Brandau W. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. EurRadiol. 2004;14:2092–8.

CAS  Google Scholar 

Lubberink M, Herzog H. Quantitative imagining of 124I and 86Y. Nuclear Med Mol Imaging (2011).

Vandenberghe S. Three-dimensional positron emission tomography imaging with 124I and 86Y. Nucl Med Commun. 2006;27:237–45.

Article  Google Scholar 

Synowiecki MA, Perk LR, Nijsen FW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018;3:3.

Article  Google Scholar 

George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv. 2021;11:31098–123.

CAS  Article  Google Scholar 

Marin JFG, Nunes RF, Coutinho AM, Zaniboni EC, Costa LB, Barbosa FG, Queiroz MA, Cerri GG, Buchpiguel CA. Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics. 2020;6(40):1715–40.

Article  Google Scholar 

Pham TT, Lu Z, Davis Ch, Li Ch, Sun F, Maher J, Yan R. Iodine-124 based dual positron emission tomography and fluorescent labeling reagents for in vivo cell tracking. Bioconjug Chem. 2020;31(4):1107–16.

留言 (0)

沒有登入
gif