Antibiofilm and staphyloxanthin inhibitory potential of terbinafine against Staphylococcus aureus: in vitro and in vivo studies

Foster TJ. The Staphylococcus aureus “superbug.” J Clin Investig. 2004;114(12):1693–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–32.

CAS  PubMed  Article  Google Scholar 

Turner NA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203–18.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shorr AF. Epidemiology of staphylococcal resistance. Clin Infect Dis. 2007;45(Suppl 3):S171–6.

PubMed  Article  Google Scholar 

Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017;16(7):457–71.

CAS  PubMed  Article  Google Scholar 

Popov I, et al. Study of the membranes of pigment-free mutant of Staphylococcus aureus. Biokhimiia. 1976;41(6):1116–20.

CAS  PubMed  Google Scholar 

Mishra NN, et al. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother. 2011;55(2):526–31.

CAS  PubMed  Article  Google Scholar 

Clauditz A, et al. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun. 2006;74(8):4950–3.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xue L, et al. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist. 2019;12:2151–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pelz A, et al. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem. 2005;280(37):32493–8.

CAS  PubMed  Article  Google Scholar 

Heilmann C. Adhesion mechanisms of staphylococci. Adv Exp Med Biol. 2011;715:105–23.

CAS  PubMed  Article  Google Scholar 

Parsek MR, Fuqua C. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol. 2004;186(14):4427–40.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Percival SL, et al. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64(Pt 4):323–34.

PubMed  Article  CAS  Google Scholar 

van Tilburg Bernardes E, Lewenza S, Reckseidler-Zenteno S. Current research approaches to target biofilm infections. Postdoc J. 2015;3(6):36–49.

PubMed  PubMed Central  Google Scholar 

Laverty G, et al. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromol. 2014;15(9):3429–39.

CAS  Article  Google Scholar 

Chen Y-Y, et al. Novel naphthalimide aminothiazoles as potential multitargeting antimicrobial agents. ACS Med Chem Lett. 2017;8(12):1331–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nolting S, Bräutigam M. Clinical relevance of the antibacterial activity of terbinafine: a contralateral comparison between 1% terbinafine cream and 0.1% gentamicin sulphate cream in pyoderma. Br J Dermatol. 1992;126(Suppl 39):56–60.

PubMed  Article  Google Scholar 

Rokade YB, Sayyed R. Naphthalene derivatives: a new range of antimicrobials with high therapeutic value. Rasayan J Chem. 2009;2:972–80.

CAS  Google Scholar 

Chen F, et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat Chem Biol. 2016;12(3):174–9.

CAS  PubMed  Article  Google Scholar 

Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS). 2006;26:M7-A7.

Google Scholar 

Gargotti M, et al. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices. Cytotechnology. 2018;70(1):261–73.

CAS  PubMed  Article  Google Scholar 

Kossakowska-Zwierucho M, et al. Factors determining Staphylococcus aureus susceptibility to photoantimicrobial chemotherapy: RsbU activity, staphyloxanthin level, and membrane fluidity. Front Microbiol. 2016;7:1141–1141.

PubMed  PubMed Central  Article  Google Scholar 

Wang Y, et al. Discovery of potent benzofuran-derived diapophytoene desaturase (CrtN) inhibitors with enhanced oral bioavailability for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. J Med Chem. 2016;59(7):3215–30.

CAS  PubMed  Article  Google Scholar 

Leejae S, Hasap L, Voravuthikunchai SP. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol. 2013;62(3):421–8.

CAS  PubMed  Article  Google Scholar 

McGuffin LJ, et al. IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res. 2019;47(W1):W408–13.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Inc, C.C.G., Molecular operating environment (MOE) version 2019.0102. 2019, Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910, Montreal

Labute P. The generalized Born/volume integral implicit solvent model: Estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008;29(10):1693–8.

CAS  PubMed  Article  Google Scholar 

Liu GY, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005;202(2):209–15.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wongthong S, et al. Attenuated total reflection: Fourier transform infrared spectroscopy for detection of heterogeneous vancomycin-intermediate Staphylococcus aureus. World J Microbiol Biotechnol. 2020;36(2):22.

CAS  PubMed  Article  Google Scholar 

Valliammai A, et al. Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus. Biomed Pharmacother. 2021;141: 111933.

CAS  PubMed  Article  Google Scholar 

Stepanovic S, C irkovic, I. and Ruzicka, F., et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891–9.

PubMed  Article  Google Scholar 

Gowrishankar S, Duncun Mosioma N, Karutha Pandian S. Coral-associated bacteria as a promising antibiofilm agent against methicillin-resistant and -susceptible Staphylococcus aureus biofilms. Evid Based Complement Alternat Med. 2012;2012:862374.

PubMed  PubMed Central  Article  Google Scholar 

Sorroche FG, et al. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol. 2012;78(12):4092–101.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nostro A, et al. Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett Appl Microbiol. 2004;38(5):423–7.

CAS  PubMed  Article  Google Scholar 

Favre-Bonté S, Köhler T, Van Delden C. Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother. 2003;52(4):598–604.

PubMed  Article  CAS  Google Scholar 

Manna C, et al. The protective effect of the olive oil polyphenol (3, 4-dihydroxyphenyl)-ethanol counteracts reactive oxygen metabolite-induced cytotoxicity in Caco-2 cells. J Nutr. 1997;127(2):286–92.

CAS  PubMed  Article  Google Scholar 

Jeffries CD, Holtman DF, Guse DG. Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol. 1957;73(4):590–1.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Plou F, et al. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol Tech. 1998;12:183–6.

CAS  Article  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

CAS  PubMed  Article  Google Scholar 

Silva LN, et al. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep. 2017;7(1):1–16.

Article  CAS  Google Scholar 

Sapp AM, et al. Contribution of the nos-pdt Operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus. PL

留言 (0)

沒有登入
gif