Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight

Von Braun W. Space medicine: the human factor in flights beyond the Earth. Urbana: University of Illinois Press; 1951.

Google Scholar 

Adams GR, Caiozzo VJ, Baldwin KM. Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol. 2003;95(6):2185–201.

Article  PubMed  Google Scholar 

Sandonà D, Desaphy J-F, Camerino GM, Bianchini E, Ciciliot S, Danieli-Betto D, et al. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS One. 2012;7(3):e33232.

PubMed Central  Article  CAS  PubMed  Google Scholar 

Martin TP, Edgerton VR, Grindeland RE. Influence of spaceflight on rat skeletal muscle. J Appl Physiol. 1988;65(5):2318–25.

CAS  Article  PubMed  Google Scholar 

Shenkman BS, Desplanches D, Nemirovskaya TL, Kuznetsov SL, Kozlovskaya IB. Plasticity of skeletal muscle fibres in space-flown primates. J Gravit Physiol. 1994;1:P64–6.

CAS  PubMed  Google Scholar 

Suetta C, Frandsen U, Jensen L, Jensen MM, Jespersen JG, Hvid LG, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS One. 2012;7(12):e51238.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med. 2006;29(5):489–500.

PubMed Central  Article  PubMed  Google Scholar 

Gao Y, Arfat Y, Wang H, Goswami N. Muscle atrophy induced by mechanical unloading: mechanisms and potential countermeasures. Front Physiol. 2018;9:235.

PubMed Central  Article  PubMed  Google Scholar 

Buckey JC. Space Physiology. Oxford: Oxford University Press; 2006.

Google Scholar 

Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180(13):1317–23.

PubMed Central  Article  PubMed  Google Scholar 

Courtine G, Pozzo T. Recovery of the locomotor function after prolonged microgravity exposure. i. head-trunk movement and locomotor equilibrium during various tasks. Exp Brain Res. 2004;158(1):86–99.

Article  PubMed  Google Scholar 

Burkhart K, Allaire B, Bouxsein ML. Negative effects of long-duration spaceflight on paraspinal muscle morphology. Spine. 2019;44(12):879–86.

Article  PubMed  Google Scholar 

Burkholder TJ, Fingado B, Baron S, Lieber RL. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol. 1994;221(2):177–90.

CAS  Article  PubMed  Google Scholar 

Charles JP, Cappellari O, Spence AJ, Hutchinson JR, Wells DJ. Musculoskeletal geometry, muscle architecture and functional specialisations of the mouse hindlimb. PLoS One. 2016;11(4):e0147669.

PubMed Central  Article  CAS  PubMed  Google Scholar 

Roy Ronald R, Baldwin Kenneth M, Edgerton RV. Response of the neuromuscular unit to spaceflight. Exerc Sport Sci Rev. 1996;24:399–425.

Google Scholar 

Recktenwald MR, Hodgson JA, Roy RR, Riazanski S, McCall GE, Kozlovskaya I, et al. Effects of spaceflight on rhesus quadrupedal locomotion After Return to 1G. J Neurophysiol. 1999;81(5):2451–63.

CAS  Article  PubMed  Google Scholar 

Fitts RH, Riley DR, Widrick JJ. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol. 2001;204(18):3201–8.

CAS  Article  PubMed  Google Scholar 

Shenkman BS. From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype. Acta Nat. 2016;8(4):47–59.

CAS  Article  Google Scholar 

Gambara G, Salanova M, Ciciliot S, Furlan S, Gutsmann M, Schiffl G, et al. Gene expression profiling in slow-type calf soleus muscle of 30 days space-flown mice. PLoS One. 2017;12(1):e0169314.

PubMed Central  Article  CAS  PubMed  Google Scholar 

Chakraborty N, Waning DL, Gautam A, Hoke A, Sowe B, Youssef D, et al. Gene-metabolite network linked to inhibited bioenergetics in association with spaceflight-induced loss of male mouse quadriceps muscle. J Bone Miner Res. 2020;35(10):2049–57.

CAS  Article  PubMed  Google Scholar 

Okada R, Fujita S, Suzuki R, Hayashi T, Tsubouchi H, Kato C, et al. Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Sci Rep. 2021;11(1):9168.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463(7280):457–63.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102(1):11–26.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Bland CS, Wang ET, Vu A, David MP, Castle JC, Johnson JM, et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 2010;38:7651–64.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Sebastian S, Faralli H, Yao Z, Rakopoulos P, Palii C, Cao Y, et al. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev. 2013;27:1247–59.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Smith CW, Nadal-Ginard B. Mutually exclusive splicing of α-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell. 1989;56:749–58.

CAS  Article  PubMed  Google Scholar 

Nadal-Ginard B. Muscle cell differentiation and alternative splicing. Curr Opin Cell Biol. 1990;2:1058–64.

CAS  Article  PubMed  Google Scholar 

Janco M, Bonello TT, Byun A, Coster ACF, Lebhar H, Dedova I, et al. The impact of tropomyosins on actin filament assembly is isoform specific. BioArchitecture. 2016;6:61–75.

PubMed Central  Article  PubMed  Google Scholar 

Breitbart RE, Nguyen HT, Medford RM, Destree AT, Mahdavi V, Nadal-Ginard B. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell. 1985;41:67–82.

CAS  Article  PubMed  Google Scholar 

Zot AS, Potter JD. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem. 1987;16:535–59.

CAS  Article  PubMed  Google Scholar 

Farah CS, Reinach FC. The troponin complex and regulation of muscle contraction. FASEB J. 1995;9:755–67.

CAS  Article  PubMed  Google Scholar 

Priori SG, Napolitano C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest. 2005;115:2033–8.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet. 2005;14:2189–200.

CAS  Article  PubMed  Google Scholar 

Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, et al. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium. 2009;45:264–74.

CAS  PubMed Central  Article  PubMed  Google Scholar 

Qiu J, Wu L, Chang Y, Sun H, Sun J. Alternative splicing transitions associate with emerging atrophy phenotype during denervation-induced skeletal muscle atrophy. J Cell Physiol. 2020;236(6):4496–514.

Article  CAS  PubMed  Google Scholar 

Sun J, Yang H, Yang X, Chen X, Xu H, Shen Y, et al. Global alternative splicing landscape of skeletal muscle atrophy induced by hindlimb unloading. Ann Transl Med. 2021;9(8):643.

留言 (0)

沒有登入
gif