Stress response and virulence factors in bacterial pathogens relevant for Chilean aquaculture: current status and outlook of our knowledge

Poblete EG, Drakeford BM, Ferreira FH, Barraza MG, Failler P. The impact of trade and markets on Chilean Atlantic salmon farming. Aquacult Int. 2019;27(5):1465. https://doi.org/10.1007/s10499-019-00400-7.

Article  Google Scholar 

Maisey K, Montero R, Christodoulides M. Vaccines for piscirickettsiosis (salmonid rickettsial septicaemia, SRS): the Chile perspective. Expert Rev Vaccines. 2017;16(3):215. https://doi.org/10.1080/14760584.2017.1244483.

CAS  Article  PubMed  Google Scholar 

Henríquez P, Kaiser M, Bohle H, Bustos P, Mancilla M. Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J Fish Dis. 2016;39(4):441.

PubMed  Article  CAS  Google Scholar 

Avendaño-Herrera R, Collarte C, Saldarriaga-Córdoba M, Irgang R. New salmonid hosts for Tenacibaculum species: expansion of tenacibaculosis in Chilean aquaculture. J Fish Dis. 2020;43(9):1077.

PubMed  Article  CAS  Google Scholar 

Rozas M, Enríquez R. Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis. 2014;37(3):163.

CAS  PubMed  Article  Google Scholar 

Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol. 2001;51(5):1639.

CAS  PubMed  Article  Google Scholar 

Avendaño-Herrera R, Toranzo AE, Magariños B. Tenacibaculosis infection in marine fish caused by Tenacibaculum maritimum: a review. Dis Aquat Org. 2006;71(3):255.

Article  Google Scholar 

López JR, Piñeiro-Vidal M, García-Lamas N, de la Herran R, Navas JI, Hachero-Cruzado I, Santos Y. First isolation of Tenacibaculum soleae from diseased cultured wedge sole, Dicologoglossa cuneata (Moreau), and brill, Scophthalmus rhombus (L.). J Fish Dis. 2010;33(3):273.

PubMed  Article  CAS  Google Scholar 

Avendaño-Herrera R, et al. Isolation, characterization and virulence potential of Tenacibaculum dicentrarchi in salmonid cultures in Chile. Transbound Emerg Dis. 2016;63(2):121.

PubMed  Article  CAS  Google Scholar 

Irgang R, González-Luna R, Gutiérrez J, Poblete-Morales M, Rojas V, Tapia-Cammas D, Avendaño-Herrera R. First identification and characterization of Tenacibaculum dicentrarchi isolated from Chilean red conger eel (Genypterus chilensis, Guichenot 1848). J Fish Dis. 2017;40(12):1915.

CAS  PubMed  Article  Google Scholar 

Hilger I, Ullrich S, Anders K. A new ulcerative flexibacteriosis-like disease (‘yellow pest’) affecting young Atlantic cod Gadus morhua from the German Wadden Sea. Dis Aquat Org. 1991;11:19.

Article  Google Scholar 

Olsen AB, Gulla S, Steinum T, Colquhoun DJ, Nilsen HK, Duchaud E. Multilocus sequence analysis reveals extensive genetic variety within Tenacibaculum spp. associated with ulcers in sea-farmed fish in Norway. Vet Microbiol. 2017;205:39.

CAS  PubMed  Article  Google Scholar 

Sanders JE, Fryer JL. Renibacterium salmoninarum gen. nov., sp. nov., the causative agent of bacterial kidney disease in salmonid fishes. Int J Syst Bacteriol. 1980;30(2):496.

CAS  Article  Google Scholar 

Iwama G, Nakanishi T. The fish immune system: organism, pathogen, and environment. Cambridge: Academic Press; 1997. p. 312.

Google Scholar 

Kumar G, Menanteau-Ledouble S, Saleh M, El-Matbouli M. Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Vet Res. 2015;46(1):103.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wrobel A, Leo JC, Linke D. Overcoming fish defences: the virulence factors of Yersinia ruckeri. Genes. 2019;10(9):700.

CAS  PubMed Central  Article  Google Scholar 

Mardones FO, et al. Identification of research gaps for highly infectious diseases in aquaculture: the case of the endemic Piscirickettsia salmonis in the Chilean salmon farming industry. Aquaculture. 2018;482:211.

Article  Google Scholar 

Kumar A, Rahal A, Sohal JS, Gupta VK. Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. Expert Rev Anti Infect Ther. 2021;19(2):121.

CAS  PubMed  Article  Google Scholar 

Trastoy R, et al. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin Microbiol Rev. 2018;31(4):e00023-e118. https://doi.org/10.1128/CMR.00023-18.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Giuliodori AM, Gualerzi CO, Soto S, Vila J, Tavío MM. Review on bacterial stress topics. Ann NY Acad Sci. 2007;1113:95.

CAS  PubMed  Article  Google Scholar 

Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013;4(4):273.

PubMed  PubMed Central  Article  Google Scholar 

McCarthy UM, et al. Survival and replication of Piscirickettsia salmonis in rainbow trout head kidney macrophages. Fish Shellfish Immunol. 2008;25(5):477.

CAS  PubMed  Article  Google Scholar 

Rojas V, Galanti N, Bols NC, Jiménez V, Paredes R, Marshall SH. Piscirickettsia salmonis induces apoptosis in macrophages and monocyte-like cells from rainbow trout. J Cell Biochem. 2010;110(2):468. https://doi.org/10.1002/jcb.22560.

CAS  Article  PubMed  Google Scholar 

Rojas V, Galanti N, Bols NC, Marshall SH. Productive infection of Piscirickettsia salmonis in macrophages and monocyte-like cells from rainbow trout, a possible survival strategy. J Cell Biochem. 2009;108(3):631.

CAS  PubMed  Article  Google Scholar 

Ramírez R, Gómez FA, Marshall SH. The infection process of Piscirickettsia salmonis in fish macrophages is dependent upon interaction with host-cell clathrin and actin. FEMS Microbiol Lett. 2015;362(1):1.

PubMed  Article  CAS  Google Scholar 

Ryckaert J, Bossier P, D’Herde K, Diez-Fraile A, Sorgeloos P, Haesebrouck F, Pasmans F. Persistence of Yersinia ruckeri in trout macrophages. Fish Shellfish Immunol. 2010;29(4):648.

CAS  PubMed  Article  Google Scholar 

Bandin I, Ellis AE, Barja JL, Secombes CJ. Interaction between rainbow trout macrophages and Renibacterium salmoninarum in vitro. Fish Shellfish Immunol. 1993;3(1):25.

Article  Google Scholar 

Gutenberger SK, Duimstra J, Rohovec J, Fryer J. Intracellular survival of Renibacterium salmoninarum in trout mononuclear phagocytes. Dis Aquat Org. 1997;28:93.

Article  Google Scholar 

Sudheesh PS, Crane S, Cain KD, Strom MS. Sortase inhibitor phenyl vinyl sulfone inhibits Renibacterium salmoninarum adherence and invasion of host cells. Dis Aquat Org. 2007;78(2):115.

CAS  Article  Google Scholar 

Campos-Pérez JJ, Ellis AE, Secombes CJ. Toxicity of nitric oxide and peroxynitrite to bacterial pathogens of fish. Dis Aquat Org. 2000;43(2):109.

Article  Google Scholar 

Diacovich L, Gorvel JP. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol. 2010;8(2):117.

CAS  PubMed  Article  Google Scholar 

Ma Z, Russo VC, Rabadi SM, Jen Y, Catlett SV, Bakshi CS, Malik M. Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol Microbiol. 2016;101(5):856.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ma Z, et al. Stringent response governs the oxidative stress resistance and virulence of Francisella tularensis. PLoS ONE. 2019;14(10): e0224094.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gottesman S. Stress reduction, bacterial style. J Bacteriol. 2017;199(20):e00433-e517. https://doi.org/10.1128/JB.00433-17.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gómez FA, Cárdenas C, Henríquez V, Marshall SH. Characterization of a functional toxin-antitoxin module in the genome of the fish pathogen Piscirickettsia salmonis. FEMS Microbiol Lett. 2011;317(1):83.

PubMed  Article  CAS  Google Scholar 

Gómez FA, Tobar JA, Henríquez V, Sola M, Altamirano C, Marshall SH. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. PLoS ONE. 2013;8(1): e54934.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Pulgar R, Travisany D, Zuñiga A, Maass A, Cambiazo V. Complete genome sequence of Piscirickettsia salmonis LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish. J Biotechnol. 2015;212:30.

CAS  PubMed  Article  Google Scholar 

Nourdin-Galindo G, et al. Comparative pan-genome analysis of Piscirickettsia salmonis reveals genomic divergences within genogroups. Front Cell Infect Microbiol. 2017;7:459. https://doi.org/10.3389/fcimb.2017.00459.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lagos F, Cartes C, Vera T, Haussmann D, Figueroa J. Identification of genomic islands in Chilean Piscirickettsia salmonis strains and analysis of gene expression involved in virulence. J Fish Dis. 2017;40(10):1321.

CAS  PubMed  Article  Google Scholar 

Bohle H, Henríquez P, Grothusen H, Navas E, Bustamante F, Bustos P, Mancilla M. The genome sequence of an oxytetracycline-resistant isolate of the fish pathogen Piscirickettsia salmonis harbors a multidrug resistance plasmid. Genome Announc. 2017;5(5):e0157

留言 (0)

沒有登入
gif