The effect of fluoroquinolones and antioxidans on biofilm formation by Proteus mirabilis strains

Opęchowska M, Bielecki S. Rola alternatywnych czynników sigma S (σS ) I sigma B (σB) w odpowiedzi komórki bakteryjnej na stres oraz ich regulacja. Adv Microbiol. 2014;53(4):305–17.

Google Scholar 

Abdallah NMA, Elsayed SB, Yassin MM, El-Gohary M, El-Gohary GM. Biofilm forming bacteria isolated from urinary tract infection, realtion to cathaterization and susceptibility to antibiotics. Int J Biotechnol Mol Biol Res. 2011;2(10):172–8.

CAS  Google Scholar 

Czaczyk K, Myszka K. Mechanizmy warunkujące oporność biofilmów bakteryjnych na czynniki antymikrobiologiczne. Biotechnologia. 2007;1(76):40–52.

Google Scholar 

Ayrapetyan M, Williams T, Oliver JD. Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol. 2018;200(20):e00249-e318. https://doi.org/10.1128/JB.00249-18.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Koo H, Allan RN, Howlin RP, Hall-Stoodley L, Stoodley P. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rewievs Microbiol. 2017;15:740–55. https://doi.org/10.1038/nrmicro.2017.99.

CAS  Article  Google Scholar 

Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9. https://doi.org/10.1016/s0966-842x(00)01913-2.

CAS  Article  PubMed  Google Scholar 

Balasubramanian A, Singh AR, Alagumuthu G. Isolation and identification of microbes from biofilm of urinary catheters and antimicrobial susceptibility evaluation. Asian Pac J Trop Biomed. 2012. https://doi.org/10.1016/S2221-1691(12)60494-8.

Article  PubMed  PubMed Central  Google Scholar 

Pearsen MM, Schaffer JN. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015. https://doi.org/10.1128/microbiolspec.UTI-0017-2013.

Article  Google Scholar 

Wilks SA, Fader MJ, Keevil CW. Novel insights into the proteus mirabilis crystalline biofilm using real-time imaging. PLoS ONE. 2015;10(10):e0141711. https://doi.org/10.1371/journal.pone.0141711.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fusco A, Coretti L, Savio V, Buommino E, Lembo F, Donnarumm G. biofilm formation and immunomodulatory activity of Proteus mirabilis clinically isolated strains. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18020414.

Article  PubMed  PubMed Central  Google Scholar 

Chen C-Y, Chen Y-H, Lu P-L, Lin W-R, Chen T-C, Lin C-Y. Proteus mirabilis urinary tract infection and bacteremia: risk factors, clinical presentation, and outcomes. J Microbiol Immunol Infect. 2012;45(3):228–36. https://doi.org/10.1016/j.jmii.2011.11.007.

CAS  Article  PubMed  Google Scholar 

Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm (Weinheim). 2018;351(9):1800141. https://doi.org/10.1002/ardp.201800141.

CAS  Article  Google Scholar 

Ferrándiz MJ, Martín-Galiano AJ, Arnanz C, Zimmerman T, de la Campa AG. Reactive oxygen species contribute to the bactericidal effects of the fluoroquinolone moxifloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2016;60(1):409–17. https://doi.org/10.1128/AAC.02299-15.

CAS  Article  PubMed  Google Scholar 

Konopacka M. Role of vitamin C in oxidative DNA damage. Postępy Hig Med Dośw. 2004;58:343–8.

Google Scholar 

Pandit S, Ravikumar V, Abdel-Haleem AM, et al. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front Microbiol. 2017;8:2599. https://doi.org/10.3389/fmicb.2017.02599.

Article  PubMed  PubMed Central  Google Scholar 

Syal K, Bhardwaj N, Chatterji D. Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis. FEMS Microbiol Lett. 2017. https://doi.org/10.1093/femsle/fnw282.

Article  PubMed  Google Scholar 

Syal K, Chatterji D. Vitamin C: a natural inhibitor of cell wall functions and stress response in Mycobacteria. Adv Exp Med Biol. 2018;1112:321–32. https://doi.org/10.1007/978-981-13-3065-0_22.

CAS  Article  PubMed  Google Scholar 

Ali Mirani Z, Khan MN, Siddiqui A, et al. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus. Iran J Basic Med Sci. 2018;21(2):175–80. https://doi.org/10.22038/IJBMS.2018.20714.5398.

Article  PubMed  PubMed Central  Google Scholar 

Silva HRA, de Souza GM, Fernandes JD, Constantino CJL, Winkelstroter LK. Unravelling the effects of the food components ascorbic acid and capsaicin as a novel anti-biofilm agent against Escherichia coli. J Food Sci Technol. 2020;57(3):1013–20. https://doi.org/10.1007/s13197-019-04134-5.

CAS  Article  PubMed  Google Scholar 

Puzanowska-Tarasiewicz H, Kuźmicka L, Tarasiewicz M. Antioxidants and reactive oxygen species. Bromatol Chem Toksykol. 2010;43(1):9–14.

CAS  Google Scholar 

Ganeshpurkar A, Saluja AK. The Pharmacological Potential of Rutin. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc. 2017;25(2):149–64. https://doi.org/10.1016/j.jsps.2016.04.025.

Article  Google Scholar 

Bernard FX, Sable S, Cameron B, Provost J. glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob Agents Chemother. 1997;41(5):992–8. https://doi.org/10.1128/AAC.41.5.992.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Peng L-Y, et al. Rutin inhibits quorum sensing, biofilm formation and virulence genes in avian pathogenic Escherichia coli. Microb Pathog. 2018;119:54–9. https://doi.org/10.1016/j.micpath.2018.04.007.

CAS  Article  PubMed  Google Scholar 

Jhanji R, Bhati V, Singh A, Kumar A. Phytomolecules against bacterial biofilm and efflux pump: an in silico and in vitro study. J Biomol Struct Dyn. 2020;38(18):5500–12. https://doi.org/10.1080/07391102.2019.1704884.

CAS  Article  PubMed  Google Scholar 

Samaszko-Fiertek J, Roguszczak P, Dmochowska B, Ślusarz R, Madaj J. Rutin—structure and properties. Wiad Chem. 2016;70:7–8.

Google Scholar 

Hryniewicz W, Sulikowska A, Szczypa K, Krzysztoń-Russjan J, Gniadkowski M. Reccomendations for susceptibility testing to antimicrobial agents of selected bacterial species. Krajowy Ośrodek Referencyjny, d/s Lekowrażliwości Drobnoustrojów; Centralne Laboratorium Surowic i Szczepionek w Warszawie. 2009.

The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. http://www.eucast.org. Accessed 30 August 2021.

Concia E, Bragantini D, Mazzaferri F. Clinical evaluation of guidelines and therapeutic approaches in multi drug-resistant urinary tract infections. J Chemother. 2017;29:19–28. https://doi.org/10.1080/1120009X.2017.1380397.

Article  PubMed  Google Scholar 

Jamil RT, Foris LA. Snowden J. Proteus Mirabilis Infections. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2021. https://www.ncbi.nlm.nih.gov/books/NBK442017/.

Wang JT, Chen PC, Chang SC, et al. Antimicrobial susceptibilities of Proteus mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program. BMC Infect Dis. 2014;14:486. https://doi.org/10.1186/1471-2334-14-486.

Article  PubMed  PubMed Central  Google Scholar 

Bonaventura GD, Spedicato I, D’Antonio D, Robuffo I, Piccolomini R. Biofilm Formation by Stenotrophomonas maltophilia: Modulation by Quinolones, Trimethoprim-Sulfamethoxazole, and Ceftazidime. Antimicrob Agents Chemother. 2004;48(1):151–60. https://doi.org/10.1128/AAC.48.1.151-160.2004.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang A, Wang Q, Kudinha T, Xiao S, Zhuo C. Effects of Fluoroquinolones and Azithromycin on Biofilm Formation of Stenotrophomonas maltophilia. Sci Rep. 2016;6(1):29701. https://doi.org/10.1038/srep29701.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Saini H, Chhibber S, Harjai K. Azithromycin and ciprofloxacin: a possible synergistic combination against Pseudomonas aeruginosa biofilm-associated urinary tract infections. Int J Antimicrob Agents. 2015;45(4):359–67. https://doi.org/10.1016/j.ijantimicag.2014.11.008.

CAS  Article  PubMed  Google Scholar 

Masadeh MM, Alzoubi KH, Ahmed WS, Magaji AS. In Vitro comparison of antibacterial and antibiofilm activities of selected fluoroquinolones against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Pathogens. 2019. https://doi.org/10.3390/pathogens8010012.

Article  PubMed  PubMed Central  Google Scholar 

Martins KB, Ferreira AM, Pereira VC, Pinheiro L, de Oliveira A, et al. In vitro Effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus saprophyticus isolated from patients with urinary tract infections. Front Microbiol. 2019;10:40. https://doi.org/10.3389/fmicb.2019.00040.

Article  PubMed  PubMed Central  Google Scholar 

Gazel D, Demirbakan H, Erinmez M. In vitro activity of hyperthermia on swarming motility and antimicrobial susceptibility profiles of Proteus mirabilis isolates. Int J Hyperthermia. 2021;38(1):1002–12. https://doi.org/10.1080/02656736.2021.1943546.

CAS  Article  PubMed  Google Scholar 

Scheld WM. Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg Infect Dis. 2003;9(1):1.

CAS  Article  Google Scholar 

Mombelli G, Pezzoli R, Pinoja-Lutz G, Monotti R, Marone C, Franciolli M. Oral vs intravenous ciprofloxacin in the initial empirical management of severe pyelonephritis or complicated urinary tract infections: a prospective randomized clinical trial. Arch Intern Med. 1999;159(1):53–8. https://doi.org/10.1001/archinte.159.1.53.

CAS  Article  PubMed  Google Scholar 

Wagenlehner FME, Weidner W, Naber KG. Pharmacokinetic characteristics of antimicrobials and optimal treatment of urosepsis. Clin Pharmacokinet. 2007;46(4):291–305. https://doi.org/10.2165/00003088-200746040-00003.

CAS  Article  PubMed  Google Scholar 

European Association of Urology. EAU Gudelines on Urological Infections. https://uroweb.org/guideline/urological-infections/ Accessed 30 August 2021.

Choe HS, Lee SJ, Yang SS, Hamasuna R, Yamamoto S, Cho YH, Matsumoto T. Committee for Development of the UAA-AAUS. Guidelines for UTI and STI. Summary of the UAA-AAUS guidelines for urinary tract infections. Int J Urol. 2018;25(3):175–85. https://doi.org/10.1111/iju.13493.

Article  PubMed  Google Scholar 

Çelen G, Özkan S, Ayhan F. The phenolic compounds from hypericum perforatum and their antimicrobial activities. Hacet J Biol Chem. 2008;36(4):339–45.

留言 (0)

沒有登入
gif