Post-translational modifications on the retinoblastoma protein

Sherr CJ. Cancer cell cycles. Science (New York, NY). 1996;274(5293):1672–7.

CAS  Article  Google Scholar 

Ho A, Dowdy SF. Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev. 2002;12(1):47–52.

CAS  PubMed  Article  Google Scholar 

Sachdeva UM, O’Brien JM. Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J Clin Investig. 2012;122(2):425–34.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chauveinc L, Mosseri V, Quintana E, Desjardins L, Schlienger P, Doz F, et al. Osteosarcoma following retinoblastoma: age at onset and latency period. Ophthalmic Genet. 2001;22(2):77–88.

CAS  PubMed  Article  Google Scholar 

Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Gene Dev. 2016;30(13):1492–502.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee JO, Russo AA, Pavletich NP. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature. 1998;391(6670):859–65.

CAS  PubMed  Article  Google Scholar 

Hassler M, Singh S, Yue WW, Luczynski M, Lakbir R, Sanchez-Sanchez F, et al. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol Cell. 2007;28(3):371–85.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee C, Chang JH, Lee HS, Cho Y. Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Gene Dev. 2002;16(24):3199–212.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xiao B, Spencer J, Clements A, Ali-Khan N, Mittnacht S, Broceño C, et al. Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc Natl Acad Sci USA. 2003;100(5):2363–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rubin SM, Gall AL, Zheng N, Pavletich NP. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell. 2005;123(6):1093–106.

CAS  PubMed  Article  Google Scholar 

Kim HY, Ahn BY, Cho Y. Structural basis for the inactivation of retinoblastoma tumor suppressor by SV40 large T antigen. EMBO J. 2001;20(1–2):295–304.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer. 2002;2(12):910–7.

CAS  PubMed  Article  Google Scholar 

Dyson N. The regulation of E2F by pRB-family proteins. Gene Dev. 1998;12(15):2245–62.

CAS  PubMed  Article  Google Scholar 

Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.

CAS  PubMed  Article  Google Scholar 

Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2(2):103–12.

CAS  PubMed  Article  Google Scholar 

Wikenheiser-Brokamp KA. Retinoblastoma regulatory pathway in lung cancer. Curr Mol Med. 2006;6(7):783–93.

CAS  PubMed  Google Scholar 

Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8(9):671–82.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Venne AS, Kollipara L, Zahedi RP. The next level of complexity: crosstalk of posttranslational modifications. Proteomics. 2014;14(4–5):513–24.

CAS  PubMed  Article  Google Scholar 

Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene. 2014;33(34):4279–85.

CAS  PubMed  Article  Google Scholar 

Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer. 2012;3(11–12):619–33.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Meng F, Qian J, Yue H, Li X, Xue K. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase. Cell Cycle. 2016;15(13):1724–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol. 2001;3(7):667–74.

CAS  PubMed  Article  Google Scholar 

Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14(6):476–86.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S, et al. Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J. 2005;24(1):160–9.

CAS  PubMed  Article  Google Scholar 

Knight JS, Sharma N, Robertson ES. Epstein–Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci USA. 2005;102(51):18562–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Damgaard RB. The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28(2):423–6.

PubMed  PubMed Central  Article  Google Scholar 

Sewduth RN, Baietti MF, Sablina AA. Cracking the monoubiquitin code of genetic diseases. Int J Mol Sci. 2020;21(9):3036.

CAS  PubMed Central  Article  Google Scholar 

Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J Cell Sci. 2016;129(5):875–80.

CAS  PubMed  Google Scholar 

Baur R, Rape M. Getting close: insight into the structure and function of K11/K48-branched ubiquitin chains. Structure. 2020;28(1):1–3.

CAS  PubMed  Article  Google Scholar 

Yao TT, Ndoja A. Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol. 2012;23(5):523–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kang J, Chung KC. The F-box protein FBXO7 positively regulates bone morphogenetic protein-mediated signaling through Lys-63-specific ubiquitination of neurotrophin receptor-interacting MAGE (NRAGE). Cell Mol Life Sci. 2015;72(1):181–95.

CAS  PubMed  Article  Google Scholar 

Clague MJ, Heride C, Urbe S. The demographics of the ubiquitin system. Trends Cell Biol. 2015;25(7):417–26.

CAS  PubMed  Article  Google Scholar 

Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

CAS  PubMed  Article  Google Scholar 

Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers. 2020;12(6):1579.

CAS  PubMed Central  Article  Google Scholar 

Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol. 2019;20(7):835–51.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Khanna R, Krishnamoorthy V, Parnaik VK. E3 ubiquitin ligase RNF123 targets lamin B1 and lamin-binding proteins. FEBS J. 2018;285(12):2243–62.

CAS  PubMed  Article  Google Scholar 

Wang Y, Zheng Z, Zhang J, Wang Y, Kong R, Liu J, et al. A novel retinoblastoma protein (RB) E3 ubiquitin ligase (NRBE3) promotes RB degradation and is transcriptionally regulated by E2F1 transcription factor. J Biol Chem. 2015;290(47):28200–13.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu HJ, Wang JN, Liu Y, Hu LL, Zhang CF, Xing BC, et al. Human U3 protein14a is a novel type ubiquitin ligase that binds RB and promotes RB degradation depending on a leucine-rich region. Bba-Mol Cell Res. 2018;1865(11):1611–20.

CAS 

留言 (0)

沒有登入
gif