Extracellular matrix dynamics: tracking in biological systems and their implications

Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

Article  Google Scholar 

Meran L, Baulies A, Li VSW. Intestinal Stem Cell Niche: the extracellular matrix and cellular components. Stem Cells Int. 2017;2017:7970385.

Article  Google Scholar 

McKee TJ, Perlman G, Morris M, Komarova SV. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep. 2019;9:1–15.

Article  Google Scholar 

Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, et al. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater. 2021;132:83–102.

Article  Google Scholar 

Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40.

Article  Google Scholar 

Xing Y, Varghese B, Ling Z, Kar AS, Reinoso Jacome E, Ren X. Extracellular Matrix by Design: Native biomaterial fabrication and functionalization to boost tissue regeneration. Regen Eng Transl Med. 2022;8:55–74.

Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

Article  Google Scholar 

Muiznieks LD, Keeley FW. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta. 2013;1832:866–75.

Article  Google Scholar 

Mithieux SM, Wise SG, Weiss AS. Tropoelastin — a multifaceted naturally smart material. Adv Drug Deliv Rev. 2013;65:421–8.

Article  Google Scholar 

Yeo GC, Keeley FW, Weiss AS. Coacervation of tropoelastin. Adv Coll Interface Sci. 2011;167:94–103.

Article  Google Scholar 

Hinek A, Rabinovitch M. 67-kD elastin-binding protein is a protective companion of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol. 1994;126:563–74.

Article  Google Scholar 

Gelse K, Pöschl E, Aigner T. Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:1531–46.

Article  Google Scholar 

Weihermann AC, Lorencini M, Brohem CA, de Carvalho CM. Elastin structure and its involvement in skin photoageing. Int J Cosmet Sci. 2017;39:241–7.

Article  Google Scholar 

Kielty CM, Sherratt MJ, Marson A, Baldock C. Fibrillin microfibrils. Adv Protein Chem. 2005;70:405–36.

Article  Google Scholar 

Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol. 2014;37:142–9.

Article  Google Scholar 

Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115:2817–28.

Article  Google Scholar 

Hulmes DJS. Collagen Diversity, Synthesis and Assembly Collagen. Boston: Springer; 2008. p. 15–47.

Google Scholar 

Chute M, Aujla P, Jana S, Kassiri Z. The non-fibrillar side of fibrosis: contribution of the basement membrane, proteoglycans, and glycoproteins to myocardial fibrosis. J Cardiovasc Dev Dis. 2019;6:35.

Article  Google Scholar 

Yurchenco PD, Ruben GC. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol. 1987;105:2559–68.

Article  Google Scholar 

Yurchenco PD, Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984;23:1839–50.

Article  Google Scholar 

Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al. A simplified laminin nomenclature. Matrix Biol. 2005;24:326–32.

Article  Google Scholar 

Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47.

Article  Google Scholar 

Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, et al. Molecular basis of elastic fiber formation. critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem. 2004;279:23748–58.

Article  Google Scholar 

Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR, Uriu-Hare JY, et al. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr. 1998;67:996S-1002S.

Article  Google Scholar 

Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. The FASEB Journal. 1990;4:1577–90.

Article  Google Scholar 

Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200:423–8.

Article  Google Scholar 

Martin GR, Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85.

Article  Google Scholar 

Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci. 2010;67:2879–95.

Article  Google Scholar 

Faffe DS, Zin WA. Lung parenchymal mechanics in health and disease. Physiol Rev. 2009;89:759–75.

Article  Google Scholar 

Toshima M, Ohtani Y, Ohtani O. Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch Histol Cytol. 2004;67:31–40.

Article  Google Scholar 

Zhao XH, Laschinger C, Arora P, Szászi K, Kapus A, McCulloch CA. Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway. J Cell Sci. 2007;120:1801–9.

Article  Google Scholar 

Arora PD, Narani N, McCulloch CAG. The compliance of collagen gels regulates transforming growth factor-β induction of α-smooth muscle actin in fibroblasts. Am J Pathol. 1999;154:871–82.

Article  Google Scholar 

Sandbo N, Lau A, Kach J, Ngam C, Yau D, Dulin NO. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β. Am J Physiol Lung Cell. 2011;301:656–66.

Article  Google Scholar 

Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

Article  Google Scholar 

Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339:237–46.

Article  Google Scholar 

DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol. 2012;94:295–305.

Article  Google Scholar 

Sasisekharan R, Raman R, Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng. 2006;8:181–231.

Article  Google Scholar 

Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Cell junctions and the extracellular matrix. Molecular Biology of the Cell (6th edition). New York: Garland Science; 2015. p. 1035–91.

Sterner E, Meli L, Kwon SJ, Dordick JS, Linhardt RJ. FGF-FGFR signaling mediated through glycosaminoglycans in microtiter plate and cell-based microarray platforms. Biochemistry. 2013;52:9009–19.

Article  Google Scholar 

Sterner E, Masuko S, Li G, Li L, Green DE, Otto NJ, et al. Fibroblast growth factor-based signaling through synthetic heparan sulfate blocks copolymers studied using high cell density three-dimensional cell printing *. J Biol Chem. 2014;289:9754–65.

Article  Google Scholar 

Schultz V, Suflita M, Liu X, Zhang X, Yu Y, Li L, et al. Heparan sulfate domains required for fibroblast growth factor 1 and 2 signaling through fibroblast growth factor receptor 1c *. J Biol Chem. 2017;292:2495–509.

Article  Google Scholar 

Uhl FE, Zhang F, Pouliot RA, Uriarte JJ, Rolandsson Enes S, Han X, et al. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater. 2020;102:231–46.

Article  Google Scholar 

Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990;346:281–4.

Article  Google Scholar 

Godoy-Guzmán C, San Martin S, Pereda J. Proteoglycan and collagen expression during human air conducting system development. Eur J Histochem. 2012;56:179–84.

Article  Google Scholar 

Kresse H, Schnherr E. Proteoglycans of the extracellular matrix and growth control. J Cell Physiol. 2001;189:266–74.

Article  Google Scholar 

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111.014647.

Article  Google Scholar 

Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.

Article  Google Scholar 

Rosso F, Giordano A, Barbarisi M, Barbarisi A. From Cell–ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.

Article  Google Scholar 

Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24:830–3.

Article  Google Scholar 

Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1979;1999(285):1028–32.

Google Scholar 

Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 2014;310:39–87.

Article  Google Scholar 

Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.

Article  Google Scholar 

Harada H, Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem. 2007;282:5597–607.

Article  Google Scholar 

Naor D, Sionov RV, Ish-Shalom D. CD44: Structure, function, and association with the malignant process. Adv Cancer Res. 1997;71:241–319.

Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development. 1996;122:3537–47.

Article  Google Scholar 

Yamada KM, Even-Ram S. Integrin regulation of growth factor receptors. Nat Cell Biol. 2002;4(4):E75-6.

Article  Google Scholar 

Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J. 1998;17:6622–32.

Article  Google Scholar 

Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, et al. A mechanism for modulation of cellular responses to vegf: activation of the integrins. Mol Cell. 2000;6:851–60.

Google Scholar 

de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol. 2020;91–92:176–87.

Article  Google Scholar 

Whitelock JM, Murdoch AD, Iozzo RV. Underwood PA. the degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996;271:10079–86.

Article  Google Scholar 

Ric

留言 (0)

沒有登入
gif