Measures of high-density lipoprotein function in men and women with severe aortic stenosis

Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, et al. Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol. 2020;40:885–900. https://doi.org/10.1161/ATVBAHA.119.313067.

CAS  Article  PubMed  Google Scholar 

Owens DS, Bartz TM, Buzkova P, Massera D, Biggs ML, Carlson SD, et al. Cumulative burden of clinically significant aortic stenosis in community-dwelling older adults. Heart. 2021;107:1493–502. https://doi.org/10.1136/heartjnl-2021-319025.

Article  PubMed  Google Scholar 

Yi B, Zeng W, Lv L, Hua P. Changing epidemiology of calcific aortic valve disease: 30-year trends of incidence, prevalence, and deaths across 204 countries and territories. Aging. 2021;13:12710–32. https://doi.org/10.18632/aging.202942.

Article  PubMed  PubMed Central  Google Scholar 

Clavel MA, Pibarot P, Messika-Zeitoun D, Capoulade R, Malouf J, Aggarval S, et al. Impact of aortic valve calcification, as measured by mdct, on survival in patients with aortic stenosis: results of an international registry study. J Am Coll Cardiol. 2014;64:1202–13. https://doi.org/10.1016/j.jacc.2014.05.066.

Article  PubMed  PubMed Central  Google Scholar 

Henein M, Hällgren P, Holmgren A, Sörensen K, Ibrahimi P, Kofoed KF, et al. Aortic root, not valve, calcification correlates with coronary artery calcification in patients with severe aortic stenosis: a two-center study. Atherosclerosis. 2015;243:631–7. https://doi.org/10.1016/j.atherosclerosis.2015.10.014.

CAS  Article  PubMed  Google Scholar 

Nasir K, Katz R, Al-Mallah M, Takasu J, Shavelle DM, Carr JJ, et al. Relationship of aortic valve calcification with coronary artery calcium severity: the multi-ethnic study of atherosclerosis (mesa). J Cardiovasc Comput Tomogr. 2010;4:41–6. https://doi.org/10.1016/j.jcct.2009.12.002.

Article  PubMed  Google Scholar 

Lerman DA, Prasad S, Alotti N. Calcific aortic valve disease: molecular mechanisms and therapeutic approaches. Eur Cardiol. 2015;10:108–12. https://doi.org/10.15420/ecr.2015.10.2.108.

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Nicoll R, He YH, Henein MY. The effect of statins on valve function and calcification in aortic stenosis: a meta-analysis. Atherosclerosis. 2016;246:318–24. https://doi.org/10.1016/j.atherosclerosis.2016.01.023.

CAS  Article  PubMed  Google Scholar 

Smith JG, Luk K, Schulz CA, Engert JC, Do R, Hindy G, et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA. 2014;312:1764–71. https://doi.org/10.1001/jama.2014.13959.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. J Am Coll Cardiol. 1997;29:630–4. https://doi.org/10.1016/s0735-1097(96)00563-3.

CAS  Article  PubMed  Google Scholar 

Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12. https://doi.org/10.1056/NEJMoa1109034.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Summerhill VI, Moschetta D, Orekhov AN, Poggio P, Myasoedova VA. Sex-specific features of calcific aortic valve disease. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21165620.

Aggarwal SR, Clavel MA, Messika-Zeitoun D, Cueff C, Malouf J, Araoz PA, et al. Sex differences in aortic valve calcification measured by multidetector computed tomography in aortic stenosis. Circ Cardiovasc Imaging. 2013;6:40–7. https://doi.org/10.1161/circimaging.112.980052.

Article  PubMed  Google Scholar 

Linde L, Carter-Storch R, Christensen NL, Øvrehus KA, Diederichsen ACP, Laursen K, et al. Sex differences in aortic valve calcification in severe aortic valve stenosis: association between computer tomography assessed calcification and valvular calcium concentrations. Eur Heart J Cardiovasc Imaging. 2021;22:581–8. https://doi.org/10.1093/ehjci/jeaa096.

Article  PubMed  Google Scholar 

Thaden JJ, Nkomo VT, Suri RM, Maleszewski JJ, Soderberg DJ, Clavel M-A, et al. Sex-related differences in calcific aortic stenosis: correlating clinical and echocardiographic characteristics and computed tomography aortic valve calcium score to excised aortic valve weight. Eur Heart J. 2016;37:693–9. https://doi.org/10.1093/eurheartj/ehv560.

Article  PubMed  Google Scholar 

Parra-Izquierdo I, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, et al. Calcification induced by type i interferon in human aortic valve interstitial cells is larger in males and blunted by a janus kinase inhibitor. Arterioscler Thromb Vasc Biol. 2018;38:2148–59. https://doi.org/10.1161/ATVBAHA.118.311504.

CAS  Article  PubMed  Google Scholar 

Parra-Izquierdo I, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, et al. Lipopolysaccharide and interferon-γ team up to activate hif-1α via stat1 in normoxia and exhibit sex differences in human aortic valve interstitial cells. Biochim Biophys Acta Mol basis Dis. 1865;2019:2168–79. https://doi.org/10.1016/j.bbadis.2019.04.014.

CAS  Article  Google Scholar 

Annabi MS, Clisson M, Fleury MA, Voisine M, Hervault M, Shen M, et al. Sex-differences in echocardiographic assessment of aortic valve in young adult ldlr(−/−)/apob(100/100)/igf-ii(+/−) mice. Exp Gerontol. 2020;140:111075. https://doi.org/10.1016/j.exger.2020.111075.

CAS  Article  PubMed  Google Scholar 

Arsenault BJ, Dube MP, Brodeur MR, de Oliveira Moraes AB, Lavoie V, Kernaleguen AE, et al. Evaluation of links between high-density lipoprotein genetics, functionality, and aortic valve stenosis risk in humans. Arterioscler Thromb Vasc Biol. 2014;34:457–62. https://doi.org/10.1161/atvbaha.113.302730.

CAS  Article  PubMed  Google Scholar 

Khera AV, Demler OV, Adelman SJ, Collins HL, Glynn RJ, Ridker PM, et al. Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: an analysis from the Jupiter trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation. 2017;135:2494–504. https://doi.org/10.1016/s2213-8587(15)00126-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35. https://doi.org/10.1056/NEJMoa1001689.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. Hdl cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93. https://doi.org/10.1056/NEJMoa1409065.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, et al. Association of hdl cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:507–13. https://doi.org/10.1016/S2213-8587(15)00126-6.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Vaughan AM, Oram JF. Abca1 redistributes membrane cholesterol independent of apolipoprotein interactions. J Lipid Res. 2003;44:1373–80. https://doi.org/10.1194/jlr.M300078-JLR200.

CAS  Article  PubMed  Google Scholar 

Busseuil D, Shi Y, Mecteau M, Brand G, Kernaleguen AE, Thorin E, et al. Regression of aortic valve stenosis by apoa-i mimetic peptide infusions in rabbits. Br J Pharmacol. 2008;154:765–73. https://doi.org/10.1038/bjp.2008.122.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lommi JI, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Kupari M, Helske S. High-density lipoproteins (hdl) are present in stenotic aortic valves and may interfere with the mechanisms of valvular calcification. Atherosclerosis. 2011;219:538–44. https://doi.org/10.1016/j.atherosclerosis.2011.08.027.

CAS  Article  PubMed  Google Scholar 

Schlotter F, Halu A, Goto S, Blaser MC, Body SC, Lee LH, et al. Spatiotemporal multi-omics mapping generates a molecular atlas of the aortic valve and reveals networks driving disease. Circulation. 2018;138:377–93. https://doi.org/10.1161/circulationaha.117.032291.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lim J, Aguilan JT, Sellers RS, Nagajyothi F, Weiss LM, Angeletti RH, et al. Lipid mass spectrometry imaging and proteomic analysis of severe aortic stenosis. J Mol Histol. 2020;51:559–71. https://doi.org/10.1007/s10735-020-09905-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Goto S, Rogers MA, Blaser MC, Higashi H, Lee LH, Schlotter F, et al. Standardization of human calcific aortic valve disease in vitro modeling reveals passage-dependent calcification. Front Cardiovasc Med. 2019;6:49. https://doi.org/10.3389/fcvm.2019.00049.

Article  PubMed  PubMed Central  Google Scholar 

Kocyigit D, Zimetti F, Gurses KM, Zanotti I, Marchi C, Ståhlman M, et al. Cholesterol efflux promoting function of high-density lipoproteins in calcific aortic valve stenosis. Atherosclerosis Plus. 2021;44:18–24. https://doi.org/10.1016/j.athplu.2021.08.002.

Article  Google Scholar 

Kritharides L, Christian A, Stoudt G, Morel D, Rothblat GH. Cholesterol metabolism and efflux in human thp-1 macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1589–99. https://doi.org/10.1161/01.atv.18.10.1589.

CAS  Article  PubMed  Google Scholar 

Mulya A, Lee JY, Gebre AK, Thomas MJ, Colvin PL, Parks JS. Minimal lipidation of pre-beta hdl by abca1 results in reduced ability to interact with abca1. Arterioscler Thromb Vasc Biol. 2007;27:1828–36.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif