A novel somatic mutation in GNAQ in a capillary malformation provides insight into molecular pathogenesis

Desai S, Glasier C (2017) Sturge-weber syndrome. N Engl J Med 377(9):e11. https://doi.org/10.1056/NEJMicm1700538

Article  PubMed  Google Scholar 

Bachur CD, Comi AM (2013) Sturge-weber syndrome. Curr Treat Options Neurol 15(5):607–617. https://doi.org/10.1007/s11940-013-0253-6

Article  PubMed  PubMed Central  Google Scholar 

Couto JA, Huang L, Vivero MP, Kamitaki N, Maclellan RA, Mulliken JB, Bischoff J, Warman ML, Greene AK (2016) Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast Reconstr Surg 137(1):77e–82e. https://doi.org/10.1097/PRS.0000000000001868

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sabeti S, Ball KL, Burkhart C, Eichenfield L, Fernandez Faith E, Frieden IJ, Geronemus R, Gupta D, Krakowski AC, Levy ML, Metry D, Nelson JS, Tollefson MM, Kelly KM (2021) Consensus statement for the management and treatment of port-wine birthmarks in sturge-weber syndrome. JAMA Dermatol 157(1):98–104. https://doi.org/10.1001/jamadermatol.2020.4226

Article  PubMed  PubMed Central  Google Scholar 

Huang L, Couto JA, Pinto A, Alexandrescu S, Madsen JR, Greene AK, Sahin M, Bischoff J (2017) Somatic GNAQ mutation is enriched in brain endothelial cells in sturge-weber syndrome. Pediatr Neurol 67:59–63. https://doi.org/10.1016/j.pediatrneurol.2016.10.010

Article  PubMed  Google Scholar 

Happle R (1987) Lethal genes surviving by mosaicism: a possible explanation for sporadic birth defects involving the skin. J Am Acad Dermatol 16(4):899–906

CAS  Article  Google Scholar 

Kimple AJ, Bosch DE, Giguere PM, Siderovski DP (2011) Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 63(3):728–749. https://doi.org/10.1124/pr.110.003038

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368(21):1971–1979. https://doi.org/10.1056/NEJMoa1213507

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nakashima M, Miyajima M, Sugano H, Iimura Y, Kato M, Tsurusaki Y, Miyake N, Saitsu H, Arai H, Matsumoto N (2014) The somatic GNAQ mutation c.548G>A (pR183Q) is consistently found in Sturge-Weber syndrome. J Hum Genet 59(12):691–693. https://doi.org/10.1038/jhg.2014.95

CAS  Article  PubMed  Google Scholar 

Wu Y, Peng C, Huang L, Xu L, Ding X, Liu Y, Zeng C, Sun H, Guo W (2021) Somatic GNAQ R183Q mutation is located within the sclera and episclera in patients with Sturge-Weber syndrome. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2020-317287

Article  PubMed  Google Scholar 

Sundaram SK, Michelhaugh SK, Klinger NV, Kupsky WJ, Sood S, Chugani HT, Mittal S, Juhasz C (2017) GNAQ mutation in the venous vascular malformation and underlying brain tissue in sturge-weber syndrome. Neuropediatrics 48(5):385–389. https://doi.org/10.1055/s-0037-1603515

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fjaer R, Marciniak K, Sundnes O, Hjorthaug H, Sheng Y, Hammarstrom C, Sitek JC, Vigeland MD, Backe PH, Oye AM, Fosse JH, Stav-Noraas TE, Uchiyama Y, Matsumoto N, Comi A, Pevsner J, Haraldsen G, Selmer KK (2021) A novel somatic mutation in GNB2 provides new insights to the pathogenesis of Sturge-Weber syndrome. Hum Mol Genet 30(21):1919–1931. https://doi.org/10.1093/hmg/ddab144

CAS  Article  PubMed  PubMed Central  Google Scholar 

Polubothu S, Al-Olabi L, Carmen Del Boente M, Chacko A, Eleftheriou G, Glover M, Jimenez-Gallo D, Jones EA, Lomas D, Folster-Holst R, Syed S, Tasani M, Thomas A, Tisdall M, Torrelo A, Aylett S, Kinsler VA (2020) GNA11 mutation as a cause of sturge-weber syndrome: expansion of the phenotypic spectrum of Galpha/11 mosaicism and the associated clinical diagnoses. J Invest Dermatol 140(5):1110–1113. https://doi.org/10.1016/j.jid.2019.10.019

CAS  Article  PubMed  PubMed Central  Google Scholar 

Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, Kobori M (2004) A novel Galphaq/11-selective inhibitor. J Biol Chem 279(46):47438–47445. https://doi.org/10.1074/jbc.M408846200

CAS  Article  PubMed  Google Scholar 

Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38(3):276–278. https://doi.org/10.1038/s41587-020-0439-x

CAS  Article  PubMed  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8):2628–2629. https://doi.org/10.1093/bioinformatics/btz931

CAS  Article  PubMed  Google Scholar 

Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358. https://doi.org/10.1038/sj.bjc.6601894

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yamauchi J, Itoh H, Shinoura H, Miyamoto Y, Tsumaya K, Hirasawa A, Kaziro Y, Tsujimoto G (2001) Galphaq-dependent activation of mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase cascade. Biochem Biophys Res Commun 288(5):1087–1094. https://doi.org/10.1006/bbrc.2001.5891

CAS  Article  PubMed  Google Scholar 

Thomas AC, Zeng Z, Riviere JB, O’Shaughnessy R, Al-Olabi L, St-Onge J, Atherton DJ, Aubert H, Bagazgoitia L, Barbarot S, Bourrat E, Chiaverini C, Chong WK, Duffourd Y, Glover M, Groesser L, Hadj-Rabia S, Hamm H, Happle R, Mushtaq I, Lacour JP, Waelchli R, Wobser M, Vabres P, Patton EE, Kinsler VA (2016) Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J Invest Dermatol 136(4):770–778. https://doi.org/10.1016/j.jid.2015.11.027

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nagae R, Sato K, Yasui Y, Banno Y, Nagase T, Ueda H (2011) Gs and Gq signalings regulate hPEM-2-induced cell responses in Neuro-2a cells. Biochem Biophys Res Commun 415(1):168–173. https://doi.org/10.1016/j.bbrc.2011.10.047

CAS  Article  PubMed  Google Scholar 

Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, Garcia-Marcos M (2018) Atypical activation of the G protein Gα(q) by the oncogenic mutation Q209P. J Biol Chem 293(51):19586–19599. https://doi.org/10.1074/jbc.RA118.005291

CAS  Article  PubMed  PubMed Central  Google Scholar 

Matsuo A, Matsumoto S, Nagano M, Masumoto KH, Takasaki J, Matsumoto M, Kobori M, Katoh M, Shigeyoshi Y (2005) Molecular cloning and characterization of a novel Gq-coupled orphan receptor GPRg1 exclusively expressed in the central nervous system. Biochem Biophys Res Commun 331(1):363–369. https://doi.org/10.1016/j.bbrc.2005.03.174

CAS  Article  PubMed  Google Scholar 

Huang L, Bichsel C, Norris AL, Thorpe J, Pevsner J, Alexandrescu S, Pinto A, Zurakowski D, Kleiman RJ, Sahin M, Greene AK, Bischoff J (2022) Endothelial GNAQ pR183Q increases ANGPT2 (Angiopoietin-2) and drives formation of enlarged blood vessels. Arterioscler Thromb Vasc Biol 42(1):e27–e43. https://doi.org/10.1161/ATVBAHA.121.316651

CAS  Article  PubMed  Google Scholar 

Bichsel CA, Goss J, Alomari M, Alexandrescu S, Robb R, Smith LE, Hochman M, Greene AK, Bischoff J (2019) Association of somatic GNAQ mutation with capillary malformations in a case of choroidal hemangioma. JAMA Ophthalmol 137(1):91–95. https://doi.org/10.1001/jamaophthalmol.2018.5141

Article  PubMed  Google Scholar 

Martins L, Giovani PA, Rebouças PD, Brasil DM, Haiter Neto F, Coletta RD, Machado RA, Puppin-Rontani RM, Nociti FH Jr, Kantovitz KR (2017) Computational analysis for GNAQ mutations: New insights on the molecular etiology of Sturge-Weber syndrome. J Mol Graph Model 76:429–440. https://doi.org/10.1016/j.jmgm.2017.07.011

CAS  Article  PubMed  Google Scholar 

Litosch I (2016) Decoding Galphaq signaling. Life Sci 152:99–106. https://doi.org/10.1016/j.lfs.2016.03.037

CAS  Article  PubMed  Google Scholar 

Klebanov N, Lin WM, Artomov M, Shaughnessy M, Njauw CN, Bloom R, Eterovic AK, Chen K, Kim TB, Tsao SS, Tsao H (2019) Use of targeted next-generation sequencing to identify activating hot spot mutations in cherry angiomas. JAMA Dermatol 155(2):211–215. https://doi.org/10.1001/jamadermatol.2018.4231

Article  PubMed  PubMed Central  Google Scholar 

Snellings DA, Gallione CJ, Clark DS, Vozoris NT, Faughnan ME, Marchuk DA (2019) Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in Bi-allelic loss of ENG or ACVRL1. Am J Hum Genet 105(5):894–906. https://doi.org/10.1016/j.ajhg.2019.09.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bean GR, Joseph NM, Gill RM, Folpe AL, Horvai AE, Umetsu SE (2017) Recurrent GNAQ mutations in anastomosing hemangiomas. Mod Pathol 30(5):722–727. https://doi.org/10.1038/modpathol.2016.234

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif