The role of inhibitory circuits in hippocampal memory processing

Aranzi, G. C. De Humano Foetu Liber Tertio Editus, ac Recognitus. Ejusdem Anatomicarum Observationum Liber ac De Tumoribus Tecundum Locos Affectos Liber Nunc Primum Editi (Apud Jacobum Brechtanum, 1587).

Duff, M. C., Covington, N. V., Hilverman, C. & Cohen, N. J. Semantic memory and the hippocampus: revisiting, reaffirming, and extending the reach of their critical relationship. Front. Hum. Neurosci. 13, 471 (2019).

PubMed  Article  Google Scholar 

Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

CAS  PubMed  PubMed Central  Article  Google Scholar 

O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

PubMed  Article  Google Scholar 

Morris, R. G. Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur. J. Neurosci. 23, 2829–2846 (2006).

CAS  PubMed  Article  Google Scholar 

Amaral, D. G. & Witter, M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 (1989).

CAS  PubMed  Article  Google Scholar 

Buzsaki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995).

CAS  PubMed  Article  Google Scholar 

Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

CAS  PubMed  Article  Google Scholar 

Fernandez-Ruiz, A. et al. Entorhinal-CA3 dual-input control of spike timing in the hippocampus by theta–gamma coupling. Neuron 93, 1213–1226.e5 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Boyce, R., Glasgow, S. D., Williams, S. & Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352, 812–816 (2016).

CAS  PubMed  Article  Google Scholar 

Goutagny, R., Jackson, J. & Williams, S. Self-generated theta oscillations in the hippocampus. Nat. Neurosci. 12, 1491–1493 (2009).

CAS  PubMed  Article  Google Scholar 

Jackson, J. et al. Reversal of theta rhythm flow through intact hippocampal circuits. Nat. Neurosci. 17, 1362–1370 (2014).

CAS  PubMed  Article  Google Scholar 

Colgin, L. L. et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357 (2009).

CAS  PubMed  Article  Google Scholar 

Schomburg, E. W. et al. Theta phase segregation of input-specific gamma patterns in entorhinal–hippocampal networks. Neuron 84, 470–485 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Colgin, L. L. Theta–gamma coupling in the entorhinal–hippocampal system. Curr. Opin. Neurobiol. 31, 45–50 (2015).

CAS  PubMed  Article  Google Scholar 

Buzsaki, G., Horvath, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027 (1992).

CAS  PubMed  Article  Google Scholar 

Buzsaki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Fuchs, E. C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

CAS  PubMed  Article  Google Scholar 

Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J. & Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68, 557–569 (2010).

CAS  PubMed  Article  Google Scholar 

Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stark, E. et al. Pyramidal cell–interneuron interactions underlie hippocampal ripple oscillations. Neuron 83, 467–480 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Amilhon, B. et al. Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron 86, 1277–1289 (2015).

CAS  PubMed  Article  Google Scholar 

Zarnadze, S. et al. Cell-specific synaptic plasticity induced by network oscillations. eLife https://doi.org/10.7554/eLife.14912 (2016). This study demonstrates that theta-nested gamma oscillations enhance hippocampal SWRs in vivo via induction of cell type-specific plasticity in CA3 interneurons.

Article  PubMed  PubMed Central  Google Scholar 

Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

CAS  PubMed  Article  Google Scholar 

Castillo, P. E., Chiu, C. Q. & Carroll, R. C. Long-term plasticity at inhibitory synapses. Curr. Opin. Neurobiol. 21, 328–338 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Honore, E., Khlaifia, A., Bosson, A. & Lacaille, J. C. Hippocampal somatostatin interneurons, long-term synaptic plasticity and memory. Front. Neural Circuits 15, 687558 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Topolnik, L. Dendritic calcium mechanisms and long-term potentiation in cortical inhibitory interneurons. Eur. J. Neurosci. 35, 496–506 (2012).

PubMed  Article  Google Scholar 

Sun, X. et al. Functionally distinct neuronal ensembles within the memory engram. Cell 181, 410–423.e17 (2020). This study reports that memory engrams contain functionally different neuronal ensembles that are driven by specifically enhanced excitatory input from the medial entorhinal cortex and inhibitory drive from CCK+interneurons, which together help to promote fear memory generalization versus discrimination.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

CAS  PubMed  Article  Google Scholar 

Pawelzik, H., Hughes, D. I. & Thomson, A. M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002).

PubMed  Article  Google Scholar 

Que, L., Lukacsovich, D., Luo, W. & Foldy, C. Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus. Nat. Commun. 12, 108 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baude, A., Bleasdale, C., Dalezios, Y., Somogyi, P. & Klausberger, T. Immunoreactivity for the GABAA receptor α1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb. Cortex 17, 2094–2107 (2007).

PubMed  Article  Google Scholar 

Mikulovic, S., Restrepo, C. E., Hilscher, M. M., Kullander, K. & Leao, R. N. Novel markers for OLM interneurons in the hippocampus. Front. Cell. Neurosci. 9, 201 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Jinno, S. et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Acsady, L., Arabadzisz, D. & Freund, T. F. Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience 73, 299–315 (1996).

CAS  PubMed  Article  Google Scholar 

Acsady, L., Gorcs, T. J. & Freund, T. F. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73, 317–334 (1996).

CAS  PubMed  Article  Google Scholar 

Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

CAS  PubMed  Article  Google Scholar 

Klausberger, T. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat. Neurosci. 7, 41–47 (2004).

CAS  PubMed  Article 

留言 (0)

沒有登入
gif