An in situ inferior vena cava ligation-stenosis model to study thrombin generation rates with flow

Huang PY, Hellums JD. Aggregation and disaggregation kinetics of human blood platelets: Part III. The disaggregation under shear stress of platelet aggregates. Biophys J. 1993;65(1):354–61.

Huang PY, Hellums JD. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation Biophys J. 1993;65(1):344–53.

CAS  PubMed  Google Scholar 

O’Brien JR. Shear-induced platelet aggregation. Lancet. 1990;335(8691):711–3.

Purvis NB Jr, Giorgio TD. The effects of elongational stress exposure on the activation and aggregation of blood platelets. Biorheology. 1991;28(5):355–67.

Article  Google Scholar 

Jesty J, Nemerson Y. The pathways of blood coagulation. In: Beutler EL, M.A., Coller, B.S., Kipps, T.J., editors. Williams Hematology. New York: McGraw-Hill, Inc.; 1995. p. 1227–38.

Google Scholar 

Duga S, Asselta R, Tenchini ML. Coagulation factor V. Int J Biochem Cell Biol. 2004;36(8):1393–9.

CAS  Article  Google Scholar 

Hunt BJ, Jurd KM. Endothelial cell activation. A central pathophysiological process BMJ. 1998;316(7141):1328–9.

CAS  PubMed  Google Scholar 

Wolberg AS, Allen GA, Monroe DM, Hedner U, Roberts HR, Hoffman M. High dose factor VIIa improves clot structure and stability in a model of haemophilia B. Br J Haematol. 2005;131(5):645–55.

CAS  Article  Google Scholar 

Wolberg AS. Thrombin generation assays: understanding how the method influences the results. Thromb Res. 2007;119(6):663–5.

CAS  Article  Google Scholar 

Hemker HC, Beguin S. Phenotyping the clotting system. Thromb Haemost. 2000;84(5):747–51.

CAS  PubMed  Google Scholar 

Yin W, Bond K, Rouf F, Rubenstein DA. Altered Flow Changes Thrombin Generation Rate of Circulating Platelets. Ann Biomed Eng. 2015;43(12):2827–37.

Article  Google Scholar 

Rubenstein DA, Yin W. Quantifying the effects of shear stress and shear exposure duration regulation on flow induced platelet activation and aggregation. J Thromb Thrombolysis. 2010;30(1):36–45.

Article  Google Scholar 

Chatterjee MS, Denney WS, Jing H, Diamond SL. Systems Biology of Coagulation Initiation: Kinetics of Thrombin Generation in Resting and Activated Human Blood. PLoS Computational Biology. 2010;6(9):e1000950. https://doi.org/10.1371/journal.pcbi.1000950.

Sakariassen KS, Roald HE, Salatti JA. Ex Vivo Models for Studying Thrombosis: Special Emphasis on Shear Rate Dependent Blood-Collagen Interactions. In: Hwang NHC, Turitto VT, Yen MRT, editors. Advances in Cardiovascular Engineering. Boston, MA: Springer, US; 1992. p. 151–74.

Chapter  Google Scholar 

Schonfelder T, Jackel S, Wenzel P. Mouse models of deep vein thrombosis. Gefasschirurgie. 2017;22(Suppl 1):28–33.

CAS  Article  Google Scholar 

Rumbaut RE, Slaff DW, Burns AR. Microvascular thrombosis models in venules and arterioles in vivo. Microcirculation. 2005;12(3):259–74.

CAS  Article  Google Scholar 

Humphries J, Gossage JA, Modarai B, Burnand KG, Sisson TH, Murdoch C, et al. Monocyte urokinase-type plasminogen activator up-regulation reduces thrombus size in a model of venous thrombosis. J Vasc Surg. 2009;50(5):1127–34.

Article  Google Scholar 

Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation. 2003;107(6):869–75.

CAS  Article  Google Scholar 

Singh I, Smith A, Vanzieleghem B, Collen D, Burnand K, Saint-Remy JM, et al. Antithrombotic effects of controlled inhibition of factor VIII with a partially inhibitory human monoclonal antibody in a murine vena cava thrombosis model. Blood. 2002;99(9):3235–40.

CAS  Article  Google Scholar 

Henke PK, Diaz JA, Myers DDJ, Wakefield TW. Recent insights into the molecular and cellular contributions to venous thrombosis. In: Homeister JW, Willis MS, editors. Molecular and translational medicine New York: Springer; 2012.

Chandler WL, Velan T. Estimating the rate of thrombin and fibrin generation in vivo during cardiopulmonary bypass. Blood. 2003;101(11):4355–62.

CAS  Article  Google Scholar 

Hanzal E, Tatra G. Prothrombin fragment F 1 + 2 plasma concentrations in patients with gynecologic malignancies. Gynecol Oncol. 1993;49(3):373–6.

CAS  Article  Google Scholar 

Haeberli A. Prothrombin fragment F1+2. In: Jespersen J, Bertina RM, Haverkate F, editors. Laboratory Techniques in Thrombosis — a Manual. Dordrecht: Springer, Netherlands; 1999. p. 217–22.

Chapter  Google Scholar 

Neuenschwander P, Jesty J. A comparison of phospholipid and platelets in the activation of human factor VIII by thrombin and factor Xa, and in the activation of factor X. Blood. 1988;72(5):1761–70.

CAS  Article  Google Scholar 

Plager DA, Nelsestuen GL. Dissociation of peripheral protein-membrane complexes by high pressure. Protein Sci. 1992;1(4):530–9.

CAS  Article  Google Scholar 

Payne H, Brill A. Stenosis of the Inferior Vena Cava: A Murine Model of Deep Vein Thrombosis. J Vis Exp. 2017;(130):e56697. https://doi.org/10.3791/56697.

Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, et al. Choosing a Mouse Model of Venous Thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(3):311–8.

CAS  Article  Google Scholar 

Diaz JA, Obi AT, Myers DD Jr, Wrobleski SK, Henke PK, Mackman N, et al. Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(3):556–62.

CAS  Article  Google Scholar 

von Brühl M-L, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

Article  Google Scholar 

Cooley BC. In Vivo Fluorescence Imaging of Large-Vessel Thrombosis in Mice. Arterioscler Thromb Vasc Biol. 2011;31(6):1351–6.

CAS  Article  Google Scholar 

Mann KG, Jenny RJ, Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem. 1988;57:915–56.

CAS  Article  Google Scholar 

Esmon CT. The Protein C Pathway. Chest. 2003;124(3, Supplement):26S-32S.

Gale AJ, Bhat V, Pellequer JL, Griffin JH, Mosnier LO, Von Drygalski A. Safety, Stability and Pharmacokinetic Properties of (super)Factor Va, a Novel Engineered Coagulation Factor V for Treatment of Severe Bleeding. Pharm Res. 2016;33(6):1517–26.

CAS  Article  Google Scholar 

Ivanciu L, Crosby J, Revenko A, MacLeod AR, Monia BP, Davidson RJ, et al. Differential Role of Plasma and Platelet-Derived Factor V In Vivo. Blood. 2017;130(Supplement 1):364.

Google Scholar 

Feinberg WM, Cornell ES, Nightingale SD, Pearce LA, Tracy RP, Hart RG, et al. Relationship Between Prothrombin Activation Fragment F1.2 and International Normalized Ratio in Patients With Atrial Fibrillation. Stroke. 1997;28(6):1101–6.

Ota S, Wada H, Abe Y, Yamada E, Sakaguchi A, Nishioka J, et al. Elevated levels of prothrombin fragment 1 + 2 indicate high risk of thrombosis. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2008;14(3):279–85.

Paramo JA, Orbe J, Beloqui O, Benito A, Colina I, Martinez-Vila E, et al. Prothrombin fragment 1+2 is associated with carotid intima-media thickness in subjects free of clinical cardiovascular disease. Stroke. 2004;35(5):1085–9.

CAS  Article  Google Scholar 

Aleman MM, Walton BL, Byrnes JR, Wang JG, Heisler MJ, Machlus KR, et al. Elevated prothrombin promotes venous, but not arterial, thrombosis in mice. Arterioscler Thromb Vasc Biol. 2013;33(8):1829–36.

CAS  Article  Google Scholar 

Violi F, Ferro D, Basili S, Saliola M, Quintarelli C, Alessandri C, et al. Association between low-grade disseminated intravascular coagulation and endotoxemia in patients with liver cirrhosis. Gastroenterology. 1995;109(2):531–9.

CAS  Article  Google Scholar 

Rühl H, Müller J, Harbrecht U, Fimmers R, Oldenburg J, Mayer G, et al. Thrombin inhibition profiles in healthy individuals and thrombophilic patients. Thromb Haemost. 2012;107(5):848–53.

Article  Google Scholar 

Estivals M, Pelzer H, Sie P, Pichon J, Boccalon H, Boneu B. Prothrombin fragment 1 + 2, thrombin–antithrombin III complexes and D-dimers in acute deep vein thrombosis: effects of heparin treatment. Br J Haematol. 1991;78(3):421–4.

CAS  Article  Google Scholar 

Borgen PO, Reikeras O. Prothrombin fragment F1+2 in plasma and urine during total hip arthroplasty. J Orthop. 2017;14(4):475–9.

Article  Google Scholar 

Baglin T. The measurement and application of thrombin generation. Br J Haematol. 2005;130(5):653–61.

CAS  Article  Google Scholar 

Liu X, Ni M, Ma L, Yang J, Wang L, Liu F, et al. Targeting blood thrombogenicity precipitates atherothrombotic events in a mouse model of plaque destabilization. Sci Rep. 2015;5:10225.

CAS  Article  Google Scholar 

Welsh JD, Colace TV, Muthard RW, Stalker TJ, Brass LF, Diamond SL. Platelet-targeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse. Journal of thrombosis and haemostasis : JTH. 2012;10(11):2344–53.

Nakatsuka MA, Barback CV, Fitch KR, Farwell AR, Esener SC, Mattrey RF, et al. In vivo ultrasound visualization of non-occlusive blood clots with thrombin-sensitive contrast agents. Biomaterials. 2013;34(37):9559–65.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif