Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment

Siebel, C., & Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiological Reviews, 97(4), 1235–1294. https://doi.org/10.1152/physrev.00005.2017

CAS  Article  PubMed  Google Scholar 

Radtke, F., MacDonald, H. R., & Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nature Reviews Immunology, 13(6), 427–437. https://doi.org/10.1038/nri3445

CAS  Article  PubMed  Google Scholar 

Demitrack, E. S., & Samuelson, L. C. (2016). Notch regulation of gastrointestinal stem cells. The Journal of Physiology, 594(17), 4791–4803. https://doi.org/10.1113/JP271667

CAS  Article  PubMed  PubMed Central  Google Scholar 

Edwards, A., & Brennan, K. (2021). Notch signalling in breast development and cancer. Frontiers in Cell and Developmental Biology, 9, 1709. https://doi.org/10.3389/fcell.2021.692173

Article  Google Scholar 

Iso, T., Hamamori, Y., & Kedes, L. (2003). Notch signaling in vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(4), 543–553. https://doi.org/10.1161/01.ATV.0000060892.81529.8F

CAS  Article  PubMed  Google Scholar 

Oishi, K., Kamakura, S., Isazawa, Y., Yoshimatsu, T., Kuida, K., Nakafuku, M., … Gotoh, Y. (2004). Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Developmental Biology, 276(1), 172–184. https://doi.org/10.1016/j.ydbio.2004.08.039

Takebe, N., Nguyen, D., & Yang, S. X. (2014). Targeting Notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacology & Therapeutics, 141(2), 140–149. https://doi.org/10.1016/j.pharmthera.2013.09.005

CAS  Article  Google Scholar 

Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139(2), 95–110. https://doi.org/10.1016/j.pharmthera.2013.02.003

CAS  Article  Google Scholar 

Lino, M. M., Merlo, A., & Boulay, J.-L. (2010). Notch signaling in glioblastoma: A developmental drug target? BMC Medicine, 8(1). https://doi.org/10.1186/1741-7015-8-72

Handford, P. A., Korona, B., Suckling, R., Redfield, C., & Lea, S. M. (2018). Structural insights into Notch receptor-ligand interactions. In T. Borggrefe & B. D. Giaimo (Eds.), Molecular mechanisms of Notch signaling (Vol. 1066, pp. 33–46). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-89512-3_2

Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with delta and serrate: Implications for notch as a multifunctional receptor. Cell, 67(4), 687–699. https://doi.org/10.1016/0092-8674(91)90064-6

CAS  Article  PubMed  Google Scholar 

Sjöqvist, M., & Andersson, E. R. (2019). Do as I say, Not(ch) as I do: Lateral control of cell fate. Developmental Biology, 447(1), 58–70. https://doi.org/10.1016/j.ydbio.2017.09.032

CAS  Article  PubMed  Google Scholar 

Fiúza, U.-M., & Arias, A. M. (2007). Cell and molecular biology of Notch. Journal of Endocrinology, 194(3), 459–474. https://doi.org/10.1677/JOE-07-0242

CAS  Article  PubMed  Google Scholar 

Grochowski, C. M., Loomes, K. M., & Spinner, N. B. (2016). Jagged1 (JAG1): Structure, expression, and disease associations. Gene, 576(1 0 3), 381–384. https://doi.org/10.1016/j.gene.2015.10.065

CAS  Article  PubMed  Google Scholar 

Dufraine, J., Funahashi, Y., & Kitajewski, J. (2008). Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene, 27(38), 5132–5137. https://doi.org/10.1038/onc.2008.227

CAS  Article  PubMed  PubMed Central  Google Scholar 

Andersen, P., Uosaki, H., Shenje, L. T., & Kwon, C. (2012). Non-canonical Notch signaling: Emerging role and mechanism. Trends in Cell Biology, 22(5), 257–265. https://doi.org/10.1016/j.tcb.2012.02.003

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ayaz, F., & Osborne, B. A. (2014). Non-canonical Notch signaling in cancer and immunity. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00345

D’Souza, B., Meloty-Kapella, L., & Weinmaster, G. (2010). Canonical and non-canonical Notch ligands. In Current topics in developmental biology (Vol. 92, pp. 73–129). Elsevier. https://doi.org/10.1016/S0070-2153(10)92003-6

Kopan, R., & Ilagan Ma, X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137(2), 216–233. https://doi.org/10.1016/j.cell.2009.03.045

CAS  Article  PubMed  PubMed Central  Google Scholar 

Phng, L.-K., & Gerhardt, H. (2009). Angiogenesis: A team effort coordinated by Notch. Developmental Cell, 16(2), 196–208. https://doi.org/10.1016/j.devcel.2009.01.015

CAS  Article  PubMed  Google Scholar 

Bayin, N. S., Frenster, J. D., Sen, R., Si, S., Modrek, A. S., Galifianakis, N., … Placantonakis, D. G. (2017). Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget, 8(39). https://doi.org/10.18632/oncotarget.18117

Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605. https://doi.org/10.1186/bcr920

CAS  Article  PubMed  PubMed Central  Google Scholar 

Swaminathan, B., Youn, S.-W., Naiche, L. A., Du, J., Villa, S. R., Metz, J. B., … Kitajewski, J. K. (2022). Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Scientific Reports, 12(1), 1655. https://doi.org/10.1038/s41598-022-05666-1

Urbanek, K., Lesiak, M., Krakowian, D., Koryciak-Komarska, H., Likus, W., Czekaj, P., … Sieroń, A. L. (2017). Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. Laboratory Investigation, 97(10), 1225–1234. https://doi.org/10.1038/labinvest.2017.60

Hatakeyama, J., Sakamoto, S., & Kageyama, R. (2006). Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Developmental Neuroscience, 28(1–2), 92–101. https://doi.org/10.1159/000090756

CAS  Article  PubMed  Google Scholar 

Kageyama, R., Ohtsuka, T., Hatakeyama, J., & Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation. Experimental Cell Research, 306(2), 343–348. https://doi.org/10.1016/j.yexcr.2005.03.015

CAS  Article  PubMed  Google Scholar 

Teodorczyk, M., & Schmidt, M. H. H. (2015). Notching on cancer’s door: Notch signaling in brain tumors. Frontiers in Oncology, 4,. https://doi.org/10.3389/fonc.2014.00341

Cuevas, I. C., Slocum, A. L., Jun, P., Costello, J. F., Bollen, A. W., Riggins, G. J., … Lal, A. (2005). Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Research, 65(12), 5070–5075. https://doi.org/10.1158/0008-5472.CAN-05-0240

Papaioannou, M.-D., Djuric, U., Kao, J., Karimi, S., Zadeh, G., Aldape, K., & Diamandis, P. (2019). Proteomic analysis of meningiomas reveals clinically distinct molecular patterns. Neuro-Oncology, 21(8), 1028–1038. https://doi.org/10.1093/neuonc/noz084

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yokota, N., Mainprize, T. G., Taylor, M. D., Kohata, T., Loreto, M., Ueda, S., … Rutka, J. T. (2004). Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene, 23(19), 3444–3453. https://doi.org/10.1038/sj.onc.1207475

Pan, W., Song, X.-Y., Hu, Q.-B., Zhang, M., & Xu, X.-H. (2019). TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway. Brain Research, 1718, 223–230. https://doi.org/10.1016/j.brainres.2019.05.004

CAS  Article  PubMed  Google Scholar 

Parmigiani, E., Taylor, V., & Giachino, C. (2020). Oncogenic and tumor-suppressive functions of NOTCH signaling in glioma. Cells, 9(10), 2304. https://doi.org/10.3390/cells9102304

CAS  Article  PubMed Central  Google Scholar 

Ludwig, K., & Kornblum, H. I. (2017). Molecular markers in glioma. Journal of neuro-oncology, 134(3), 505–512. https://doi.org/10.1007/s11060-017-2379-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wen, P. Y., Weller, M., Lee, E. Q., Alexander, B. M., Barnholtz-Sloan, J. S., Barthel, F. P., … van den Bent, M. J. (2020). Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 22(8), 1073–1113. https://doi.org/10.1093/neuonc/noaa106

Zhang, X.-P., Zheng, G., Zou, L., Liu, H.-L., Hou, L.-H., Zhou, P., … Chen, J.-Y. (2008). Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Molecular and Cellular Biochemistry, 307(1–2), 101–108. https://doi.org/10.1007/s11010-007-9589-0

Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., … Aldape, K. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173. https://doi.org/10.1016/j.ccr.2006.02.019

Kanamori, M., Kawaguchi, T., Nigro, J. M., Feuerstein, B. G., Berger, M. S., Miele, L., & Pieper, R. O. (2007). Contribution of Notch signaling activation to human glioblastoma multiforme. Journal of Neurosurgery, 106(3), 417–427. https://doi.org/10.3171/jns.2007.106.3.417

Article  PubMed  Google Scholar 

Li, J., Cui, Y., Gao, G., Zhao, Z., Zhang, H., & Wang, X. (2011). Notch1 is an independent prognostic factor for patients with glioma. Journal of Surgical Oncology, 103(8), 813–817. https://doi.org/10.1002/jso.21851

CAS  Article  PubMed  Google Scholar 

Purow, B. W., Haque, R. M., Noel, M. W., Su, Q., Burdick, M. J., Lee, J., … Fine, H. A. (2005). Expression of Notch-1 and its ligands, delta-like-1 and jagged-1, is critical for glioma cell survival and proliferation. Cancer Research, 65(6), 2353–2363. https://doi.org/10.1158/0008-5472.CAN-04-1890

Suvà, M. L., & Tirosh, I. (2020). The glioma stem cell model in the era of single-cell genomics. Cancer Cell, 37(5), 630–636. https://doi.org/10.1016/j.ccell.2020.04.001

CAS  Article  PubMed  Google Scholar 

Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., … Gilbertson, R. J. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82. https://doi.org/10.1016/j.ccr.2006.11.020

Zhu, T. S., Costello, M. A., Talsma, C. E., Flack, C. G., Crowley, J. G., Hamm, L. L., … Fan, X. (2011). Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Research, 71(18), 6061–6072. https://doi.org/10.1158/0008-5472.CAN-10-4269

Fan, X., Khaki, L., Zhu, T. S., Soules, M. E., Talsma, C. E., Gul, N., … Eberhart, C. G. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. STEM CELLS, 28(1), 5–16. https://doi.org/10.1002/stem.254

Qiang, L., Wu, T., Zhang, H.-W., Lu, N., Hu, R., Wang, Y.-J., … Guo, Q.-L. (2012). HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death and Differentiation, 19(2), 284–294. https://doi.org/10.1038/cdd.2011.95

Man, J., Yu, X., Huang, H., Zhou, W., Xiang, C., Huang, H., … Yu, J. S. (2018). Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell, 22(1), 104-118.e6. https://doi.org/10.1016/j.stem.2017.10.005

Cenciarelli, C., Marei, H. E., Zonfrillo, M., Casalbore, P., Felsani, A., Giannetti, S., … Mangiola, A. (2017). The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget, 8(11), 17873–17886. https://doi.org/10.18632/oncotarget.15013

Hai, L., Zhang, C., Li, T., Zhou, X., Liu, B., Li, S., … Yang, X. (2018). Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway. Cell Death & Disease, 9(2), 158. https://doi.org/10.1038/s41419-017-0119-z

Han, N., Hu, G., Shi, L., Long, G., Yang, L., Xi, Q., … Zhang, M. (2017). Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget, 8(50), 88059–88068. https://doi.org/10.18632/oncotarget.21409

Wang, J., Wakeman, T. P., Lathia, J. D., Hjelmeland, A. B., Wang, X.-F., White, R. R., … Sullenger, B. A. (2009). Notch promotes radioresistance of glioma stem cells. Stem Cells, N/A-N/A.https://doi.org/10.1002/stem.261

Yi, L., Zhou, X., Li, T., Liu, P., Hai, L., Tong, L., … Yang, X. (2019). Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Journal of Experimental & Clinical Cancer Research : CR, 38, 339. https://doi.org/10.1186/s13046-019-1319-4

Gagliardi, F., Narayanan, A., Reni, M., Franzin, A., Mazza, E., Boari, N., … Mortini, P. (2014). The role of CXCR4 in highly malignant human gliomas biology: Current knowledge and future directions. Glia, 62(7), 1015–1023. https://doi.org/10.1002/glia.22669

Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews. Drug Discovery, 6(4), 273–286. https://doi.org/10.1038/nrd2115

CAS  Article  PubMed  Google Scholar 

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936. https://doi.org/10.1038/nature04478

CAS  Article  PubMed  Google Scholar 

Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. https://doi.org/10.1038/nature10144

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fonseca, C. G., Barbacena, P., & Franco, C. A. (2020). Endothelial cells on the move: Dynamics in vascular morphogenesis and disease. Vascular Biology, 2(1), H29–H43. https://doi.org/10.1530/VB-20-0007

留言 (0)

沒有登入
gif