Antimicrobial peptide in polymethylmethacrylate bone cement as a prophylaxis of infectious complications in orthopedics–an experiment in a murine model

Anagnostakos K, Hitzler P, Pape D, Kohn D, Kelm J (2008) Persistence of bacterial growth on antibiotic-loaded beads: is it actually a problem? Acta Orthop 79:302–307. https://doi.org/10.1080/17453670710015120

Article  PubMed  Google Scholar 

Arciola CR, Campoccia D, Ehrlich GD, Montanaro L (2015) Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol 830:29–46. https://doi.org/10.1007/978-3-319-11038-7-2

Article  PubMed  Google Scholar 

Baltzer SA, Brown MH (2011) Antimicrobial peptides–promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235. https://doi.org/10.1159/000331009

CAS  Article  PubMed  Google Scholar 

Birt MC, Anderson DW, Toby EB, Wang J (2016) Osteomyelitis: recent advances in pathophysiology and therapeutic strategies. J Orthop 14:45–52. https://doi.org/10.1016/j.jor.2016.10.004

Article  PubMed  PubMed Central  Google Scholar 

Bistolfi A, Massazza G, Verné E, Maseé A, Deledda D, Ferraris S, Miola M, Galetto F, Crova M (2011) Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. https://doi.org/10.5402/2011/290851

Article  PubMed  PubMed Central  Google Scholar 

Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31:6363–6377. https://doi.org/10.1016/j.biomaterials.2010.05.005

CAS  Article  PubMed  Google Scholar 

Carli AV, Bhimani S, Yang X, de Mesy Bentley KL, Ross FP, Bostrom MPG (2018) Vancomycin loaded polymethylmethacrylate spacers fail to eradicate periprosthetic joint infection in a clinically representative mouse model. J Bone Joint Surg Am 100:e76. https://doi.org/10.2106/JBJS.17.01100

Article  PubMed  Google Scholar 

Costa B, Martínez-de-Tejada G, Gomes PAC, Martins MC, Costa F (2021) Antimicrobial peptides in the battle against orthopedic implant-related infections: a review. Pharmaceuticals 13:1918. https://doi.org/10.3390/pharmaceutics13111918

CAS  Article  Google Scholar 

Faber C, Hoogendoorn RJW, Stallmann HP, Lyaruu DM, van Nieuw AA, Wuisman PIJM (2004) In vivo comparison of Dhvar-5 and gentamicin in MRSA osteomyelitis prevention model. J Antimicrob Chemother 54:1078–1084. https://doi.org/10.1093/jac/dkh441

CAS  Article  PubMed  Google Scholar 

Faber C, Stallmann HP, Lyaruu DM, de Blieck JMA, Bervoets ThJM, van Nieuw AA, Wuisman PIJM (2003) Release of antimicrobial peptide Dhvar-5 from polymethylmethacrylate beads. J Antimicrob Chemother 51:1359–1364. https://doi.org/10.1093/jac/dkg258

CAS  Article  PubMed  Google Scholar 

Faber C, Stallmann HP, Lyaruu DM, Joosten U, von Eiff C, van Nieuw AA, Wuisman PIJM (2005) Comparable efficacies of the antimicrobial peptide human lactoferrin 1–11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob Agents Chemother 49:2438–2444. https://doi.org/10.1128/AAC.49.6.2438-2444.2005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fӧlsch C, Federmann M, Kuehn KD, Kittinger C, Kogler S, Zarfel G, Kerwat M, Braun S, Fuchs-Winkelmann S, Paletta JRJ, Roessler PP (2015) Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop 39:981–988. https://doi.org/10.1007/s00264-014-2582-9

Article  Google Scholar 

Fӧlsch C, Federmann M, Lakemeier S, Kuehn KD, Kittinger C, Kerwat M, Fuchs-Winkelmann S, Paletta JRJ, Roessler PP (2016) Systemic antibiotic therapy does not significantly improve outcome in a rat model of implant-associated osteomyelitis induced by methicillin susceptible Staphylococcus aureus. Arch Orthop Trauma Surg 136:585–592. https://doi.org/10.1007/s00402-016-2419-7

Article  Google Scholar 

Getzlaf MA, Lewallen EA, Kremers HM, Jones DL, Bonin CA, Dudakovic A, Thaler R, Cohen RC, Lewallen DG, van Wijnen AJ (2016) Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthop Res 34:177–186. https://doi.org/10.1002/jor.23068

Article  PubMed  Google Scholar 

Hanssen AD, Osmon DR, Patel R (2005) Local antibiotic delivery systems: where are we and where are we going? Clin Orthop Rel Res 437:111–114. https://doi.org/10.1097/01.blo.0000175122.50804.ce

Article  Google Scholar 

Jackson J, Leung F, Duncan C, Mugabe C, Burt H (2011) The use of bone cement for the localized, controlled release of the antibiotics vancomycin, linezolid, or fusidic acid: effect of additives on drug release rates and mechanical strength. Drug Deliv Transl Res 1:121–131. https://doi.org/10.1007/s13346-011-0015-5

CAS  Article  PubMed  Google Scholar 

Jahoda D, Nyč O, Pokorný D, Landor I, Sosna A (2006) Antibiotic treatment for prevention of infectious complications in joint replacement. Acta Chir Orthop Traum Cech 73:108–114

CAS  PubMed  Google Scholar 

Kendoff DO, Gehrke T, Stangenberg P, Frommelt L, Bösebeck H (2016) Bioavailability of gentamicin and vancomycin released from an antibiotic containing bone cement in patients undergoing a septic one-stage total hip arthroplasty (THA) revision: a monocentric open clinical trial. Hip Int 26:90–96. https://doi.org/10.5301/hipint.5000307

Article  PubMed  Google Scholar 

Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40:517–528. https://doi.org/10.1016/j.tips.2019.04.012

CAS  Article  PubMed  Google Scholar 

Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopaedic infections. J Orthop Res 36:22–32. https://doi.org/10.1002/jor.23656

Article  PubMed  Google Scholar 

Melicherčík P, Čeřovský V, Nešuta O, Jahoda D, Landor I, Ballay R, Fulín P (2018a) Testing the efficacy of antimicrobial peptides in the topical treatment of induced osteomyelitis in rats. Folia Microbiol 63:97–104. https://doi.org/10.1007/s12223-017-0540-9

CAS  Article  Google Scholar 

Melicherčík P, Klapková E, Kotaška K, Jahoda D, Landor I, Čeřovský V (2020) High-performance liquid chromatography as a novel method for determination of α-defensins in synovial fluid for diagnosis of orthopedic infections. Diagnostics 10:33. https://doi.org/10.3390/diagnostics10010033

CAS  Article  PubMed Central  Google Scholar 

Melicherčík P, Nešuta O, Čeřovský V (2018b) Antimicrobial peptides for topical treatment of osteomyelitis and implant-related infections: study in the spongy bone. Pharmaceuticals 11:20. https://doi.org/10.3390/ph11010020

CAS  Article  PubMed Central  Google Scholar 

Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96. https://doi.org/10.1016/j.cbpa.2017.03.014

CAS  Article  PubMed  PubMed Central  Google Scholar 

Monincová L, Buděšinský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39:763–775. https://doi.org/10.1007/s00726-010-0519-1

CAS  Article  PubMed  Google Scholar 

Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, Kundu B (2016) Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv 34:1305–1317. https://doi.org/10.1016/j.biotechadv.2016.09.005

CAS  Article  PubMed  Google Scholar 

Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472. https://doi.org/10.1016/j.tibtech.2011.05.001

CAS  Article  PubMed  Google Scholar 

Parvizi J, Gehrke T (2014) Definition of periprosthetic joint infection. J Arthroplasty 29:1331. https://doi.org/10.1016/j.arth.2014.03.009

Article  PubMed  Google Scholar 

Pletzer D, Hancock REW (2016) Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol 198:2572–2578. https://doi.org/10.1128/JB.00017-16

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2:176–194. https://doi.org/10.4161/biom.22905

Article  PubMed  PubMed Central  Google Scholar 

Romano CL, Toscano M, Romano D, Drago L (2013) Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 25:67–80. https://doi.org/10.1179/1973947812Y.0000000045

CAS  Article  PubMed  Google Scholar 

van Vugt TAG, Arts JJ, Geurts JAP (2019) Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front Microbiol 10:1626. https://doi.org/10.3389/fmicb.2019.01626

Article  PubMed  PubMed Central  Google Scholar 

Volejníková A, Melicherčík P, Nešuta O, Vaňková E, Bednárová L, Rybáček J, Čeřovský V (2019) Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J Med Microbiol 68:961–972. https://doi.org/10.1099/jmm.0.001000

CAS  Article  PubMed  Google Scholar 

Webb JCJ, Spencer RF (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br 89:851–857. https://doi.org/10.1302/0301-620X.89B7.19148

CAS  Article  PubMed  Google Scholar 

Winkler H, Haiden P (2016) Treatment of chronic bone infection. Oper Tech Orthop 26:2–11. https://doi.org/10.1053/j.oto.2016.01.002

Article  Google Scholar 

留言 (0)

沒有登入
gif