Prospects and challenges of dynamic DNA nanostructures in biomedical applications

Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

PubMed  Article  CAS  Google Scholar 

Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

CAS  PubMed  Article  Google Scholar 

Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

Article  CAS  Google Scholar 

Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vinogradov, A. E. DNA helix: the importance of being GC‐rich. Nucleic Acids Res. 31, 1838–1844 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. 1372–1373 (2004).

Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

CAS  PubMed  Article  Google Scholar 

Yan, H., LaBean, T. H., Feng, L. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. USA 100, 8103–8108 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self‐assembly: building complex nanoarchitectures. ChemPhysChem 7, 1641–1647 (2006).

CAS  PubMed  Article  Google Scholar 

Nummelin, S., Kommeri, J., Kostiainen, M. A. & Linko, V. Evolution of Structural DNA Nanotechnology. Adv. Mater. 30, e1703721 (2018).

PubMed  Article  CAS  Google Scholar 

Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Williams, S. et al. In International Workshop on DNA-based Computers. 90-101 (Springer).

Zadeh, J. N. et al. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

CAS  PubMed  Article  Google Scholar 

Kim, D. N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic acids Res. 40, 2862–2868 (2012).

CAS  PubMed  Article  Google Scholar 

Doye, J. P. et al. The oxDNA coarse-grained model as a tool to simulate DNA origami. arXiv preprint arXiv:2004.05052. (2020).

Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221 (2011).

CAS  PubMed  Article  Google Scholar 

Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779 (2015).

CAS  PubMed  Article  Google Scholar 

Zhou, Z., Zhang, P., Yue, L. & Willner, I. Triggered interconversion of dynamic networks composed of DNA-Tetrahedra nanostructures. Nano Lett. 19, 7540–7547 (2019).

CAS  PubMed  Article  Google Scholar 

Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

CAS  PubMed  Article  Google Scholar 

Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

CAS  PubMed  Article  Google Scholar 

Ramezani, H. & Dietz, H. Building machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).

CAS  PubMed  Article  Google Scholar 

Ma, W. et al. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct. Target Ther. 6, 351 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, T. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15, 2728–2757 (2020).

CAS  PubMed  Article  Google Scholar 

Li, J. et al. The neuroprotective effect of MicroRNA‐22‐3p modified tetrahedral framework nucleic acids on damaged retinal neurons via TrkB/BDNF signaling pathway. Adv. Funct. Mater. 31, 2104141 (2021).

CAS  Article  Google Scholar 

Li, Y. et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: From innate to adaptive immunity. Nanomicro Lett. 13, 86 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, M. et al. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater. 8, 368–380 (2022).

CAS  PubMed  Article  Google Scholar 

Wang, Y. et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett. 22, 1759–1768 (2022).

CAS  PubMed  Article  Google Scholar 

Zhou, Y. et al. An organelle-specific nanozyme for diabetes care in genetically or diet-induced models. Adv. Mater. 32, 2003708 (2020).

CAS  Article  Google Scholar 

Shen, H., Wang, Y., Wang, J., Li, Z. & Yuan, Q. Emerging biomimetic applications of DNA nanotechnology. ACS Appl. Mater. Interfaces 11, 13859–13873 (2019).

CAS  PubMed  Article  Google Scholar 

Liu, L. et al. Efficient and reliable MicroRNA imaging in living cells via a FRET-based localized Hairpin-DNA cascade amplifier. Anal. Chem. 91, 3675–3680 (2019).

CAS  PubMed  Article  Google Scholar 

Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

CAS  PubMed  Article  Google Scholar 

Fisher, P. D. E. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano 12, 1508–1518 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shen, Q. et al. DNA-origami nanotrap for studying the selective barriers formed by phenylalanine-glycine-rich nucleoporins. J. Am. Chem. Soc. 143, 12294–12303 (2021).

CAS  PubMed  Article  Google Scholar 

Woods, D. et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019).

CAS  PubMed  Article  Google Scholar 

Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

CAS  PubMed  Article  Google Scholar 

Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421–430 (2021).

CAS  PubMed  Article  Google Scholar 

Kahn, J. S., Hu, Y. & Willner, I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc. Chem. Res 50, 680–690 (2017).

CAS  PubMed  Article  Google Scholar 

Zhang, J., Song, S., Wang, L., Pan, D. & Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc. 2, 2888–2895 (2007).

CAS  PubMed  Article  Google Scholar 

Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

CAS  PubMed  Article  Google Scholar 

Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

CAS  PubMed  Article  Google Scholar 

Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

留言 (0)

沒有登入
gif