The cardiosplenic axis: the prognostic role of the spleen in heart failure

World Health Organization (2021) Cardiovascular disease. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. Accessed 23 July 2021

Lippi G, Sanchis-Gomar F (2020) Global epidemiology and future trends of heart failure. AME Med J 5. https://doi.org/10.21037/amj.2020.03.03

Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14:591–602. https://doi.org/10.1038/nrcardio.2017.65

Article  PubMed  Google Scholar 

Bowen RES, Graetz TJ, Emmert DA, Avidan MS (2020) Statistics of heart failure and mechanical circulatory support in 2020. Ann Transl Med 8:827. https://doi.org/10.21037/atm-20-1127

Iorio A, Pozzi A, Senni M (2017) Addressing the heterogeneity of heart failure in future randomized trials. Curr Heart Fail Rep 14:197–202. https://doi.org/10.1007/s11897-017-0332-1

Article  PubMed  Google Scholar 

Tromp J, Shen L, Jhund PS, Anand IS, Carson PE, Desai AS, Granger CB, Komajda M, McKelvie RS, Pfeffer MA, Solomon SD, Køber L, Swedberg K, Zile MR, Pitt B, Lam CSP, McMurray JJV (2019) Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. J Am Coll Cardiol 74:601–612. https://doi.org/10.1016/j.jacc.2019.05.052

Article  PubMed  Google Scholar 

Spencer FA, Meyer TE, Gore JM, Goldberg RJ (2002) Heterogeneity in the management and outcomes of patients with acute myocardial infarction complicated by heart failure. Circulation 105:2605–2610. https://doi.org/10.1161/01.CIR.0000017861.00991.2F

Article  PubMed  Google Scholar 

Shah AM, Solomon SD (2012) Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. Eur Heart J 33:1716–1717. https://doi.org/10.1093/eurheartj/ehs124

Article  PubMed  Google Scholar 

Aaronson KD, Cowger J (2012) Heart failure prognostic models: why bother?. Circ Heart Fail 5:6–9. https://doi.org/10.1161/CIRCHEARTFAILURE.111.965848

Article  PubMed  PubMed Central  Google Scholar 

Raphael C, Briscoe C, Davies J, Whinnett ZI, Manisty C, Sutton R, Mayet J, Francis DP (2007) Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart 93:476–482. https://doi.org/10.1136/hrt.2006.089656

Article  PubMed  Google Scholar 

Ahmed A (2007) A propensity matched study of New York Heart Association class and natural history end points in heart failure. Am J Cardiol 99:549–553. https://doi.org/10.1016/j.amjcard.2006.08.065

Article  PubMed  Google Scholar 

Blumer V, Mentz RJ, Sun JL, Butler J, Metra M, Voors AA, Hernandez AF, O’Connor CM, Greene SJ (2021) Prognostic role of prior heart failure hospitalization among patients hospitalized for worsening chronic heart failure. Circ Heart Fail 14:e007871

Article  Google Scholar 

Yildiz O, Aslan G, Demirozu ZT, Yenigun CD, Yazicioglu N (2017) Evaluation of resting cardiac power output as a prognostic factor in patients with advanced heart failure. Am J Cardiol 120:973–979. https://doi.org/10.1016/j.amjcard.2017.06.028

Article  PubMed  Google Scholar 

Morimoto R, Mizutani T, Araki T, Oishi H, Kimura Y, Kazama S, Shibata N, Kuwayama T, Hiraiwa H, Kondo T, Furusawa K, Okumura T, Murohara T (2021) Prognostic value of resting cardiac power index depends on mean arterial pressure in dilated cardiomyopathy. ESC Heart Fail 8:3206–3213. https://doi.org/10.1002/ehf2.13446

Article  PubMed  PubMed Central  Google Scholar 

Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WHW, Tsai EJ, Wilkoff BL, College A, of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines (2013) ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147-239. https://doi.org/10.1016/j.jacc.2013.05.019

Article  PubMed  Google Scholar 

Ahmadi-Kashani M, Kessler DJ, Day J, Bunch TJ, Stolen KQ, Brown S, Sbaity S, Olshansky B, INTRINSIC RV Study Investigators (2009) Heart rate predicts outcomes in an implantable cardioverter-defibrillator population. Circulation 120:2040–2045. https://doi.org/10.1161/CIRCULATIONAHA.108.847608

Article  Google Scholar 

Vukadinović AN, Vukadinović D, Borer J, Cowie M, Komajda M, Lainscak M, Swedberg K, Böhm M (2017) Heart rate and its reduction in chronic heart failure and beyond. Eur J Heart Fail 19:1230–1241. https://doi.org/10.1002/ejhf.902

Article  PubMed  Google Scholar 

Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Kimura Y, Ishihara T, Iwata E, Shimojo M, Kondo S, Aoki S, Kanzaki Y, Tanimura D, Sano H, Awaji Y, Yamada S, Murohara T (2021) Prognostic value of leucine/phenylalanine ratio as an amino acid profile of heart failure. Heart Vessels 36:965–977. https://doi.org/10.1007/s00380-020-01765-z

Article  PubMed  Google Scholar 

Hiraiwa H, Okumura T, Kondo T, Kato T, Kazama S, Ishihara T, Iwata E, Shimojo M, Kondo S, Aoki S, Kanzaki Y, Tanimura D, Sano H, Awaji Y, Yamada S, Murohara T (2020) Usefulness of the plasma branched-chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure. J Cardiol 75:689–696. https://doi.org/10.1016/j.jjcc.2019.12.016

Article  PubMed  Google Scholar 

Taylor CJ, Ordóñez-Mena JM, Roalfe AK, Lay-Flurrie S, Jones NR, Marshall T, Hobbs FDR (2019) Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: population based cohort study. BMJ 364:I223. https://doi.org/10.1136/bmj.I223

Article  Google Scholar 

Hiraiwa H, Okumura T, Sawamura A, Kondo T, Kazama S, Kimura Y, Shibata N, Arao Y, Oishi H, Kato H, Kuwayama T, Yamaguchi S, Furusawa K, Morimoto R, Murohara T (2020) Spleen size improvement in advanced heart failure patients using a left ventricular assist device. Artif Organs 44:700–708

Article  Google Scholar 

Maeda D, Sakane K, Kanzaki Y, Horai R, Akamatsu K, Tsuda K, Ito T, Sohmiya K, Hoshiga M (2021) Splenic volume index determined using computed tomography upon admission is associated with readmission for heart failure among patients with acute decompensated heart failure. Int Heart J 62:584–591. https://doi.org/10.1536/ihj.20-564

Article  PubMed  Google Scholar 

Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JHF, Fayad ZA, Lehrer-Graiwer J, Korsgren M, Figueroa AL, Fredrickson J, Rubin B, Hoffmann U, Truong QA, Min JK, Baruch A, Nasir K, Nahrendorf M, Tawakol A (2015) Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging 8:121–130. https://doi.org/10.1016/j.jcmg.2014.10.009

Article  PubMed  PubMed Central  Google Scholar 

Prabhu SD (2018) The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans Am Clin Climatol Assoc 129:202–214. PMCID: PMC6116633

Ilardo MA, Moltke I, Korneliussen TS, Cheng J, Stern AJ, Racimo F, de Barros DP, Sikora M, Seguin-Orlando A, Rasmussen S, van den Munckhof IC, ter Horst R, Joosten LAB, Netea MG, Salingkat S, Nielsen R, Willerslev E (2018) Physiological and genetic adaptations to diving in sea nomads. Cell 173:569-580.e15. https://doi.org/10.1016/j.cell.2018.03.054

CAS  Article  PubMed  Google Scholar 

Holmström PK, Karlsson Ö, Lindblom H, McGawley K, Schagatay EK (2021) Enhanced splenic volume and contraction in elite endurance athletes. J Appl Physiol 131:474–486. https://doi.org/10.1152/japplphysiol.01066.2020

CAS  Article  PubMed  Google Scholar 

Lewis SM, Williams A, Eisenbarth SC (2019) Structure and function of the immune system in the spleen. Sci Immunol 4:eaau6085. https://doi.org/10.1126/sciimmunol.aau6085

Nolte MA, Hoen EN, van Stijn A, Kraal G, Mebius RE (2000) Isolation of the intact white pulp. Quantitative and qualitative analysis of the cellular composition of the splenic compartments. Eur J Immunol 30:626–634. https://doi.org/10.1002/1521-4141(2000002)30:2%3c626::AID-IMMU626%3e3.0.CO;2-H

CAS  Article  PubMed  Google Scholar 

Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616. https://doi.org/10.1038/nri1669

CAS  Article  PubMed  Google Scholar 

Pellas TC, Weiss L (1990) Deep splenic lymphatic vessels in the mouse: a route of splenic exit for recirculating lymphocytes. Am J Anat 187:347–354. https://doi.org/10.1002/aja.1001870404

CAS  Article  PubMed  Google Scholar 

Bronte V, Pittet MJ (2013) The spleen in local and systemic regulation of immunity. Immunity 39:806–818. https://doi.org/10.1016/j.immuni.2013.10.010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rein H (1949) Via a regulation system “spleen-liver” for the oxidative metabolism of the body tissues and especially the heart. Nat Sci 36:260–268 (in German). https://doi.org/10.1007/BF00584977

Rein H, Dohrn A (1951) The role of the spleen and liver in coronary or hypoxic myocardial insufficiency. Pflugers Arch Gesamte Physiol Menschen Tiere 253:435–458 (in German). https://doi.org/10.1007/BF00370032

Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo J-L, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616. https://doi.org/10.1126/science.1175202

CAS  Article  PubMed  PubMed Central  Google Scholar 

Enslow MS, Preece SR, Wildman-Tobriner B, Enslow RA, Mazurowski M, Nelson RC (2018) Splenic contraction: a new member of the hypovolemic shock complex. Abdom Radiol (New York) 43:2375–2783. https://doi.org/10.1007/s00261-018-1478-3

Article  Google Scholar 

Kiguchi T, Higuchi T, Takahashi N, Shimokoshi T, Yamazaki M, Yoshimura N, Aoyama H (2015) CT measurement of splenic volume changes as a result of hypovolemic shock. Jpn J Radiol 33:645–649. https://doi.org/10.1007/s11604-015-0470-x

Article  PubMed  Google Scholar 

Koga Y, Fujita M, Nakahara T, Yagi T, Miyauchi T, Kaneda K, Kawamura Y, Oda Y, Tsuruta R (2016) Splenic volume in severe sepsis is associated with disease severity and pneumococcal infection. Acute Med Surg 3:339–344. https://doi.org/10.1002/ams2.204

Article  PubMed  PubMed Central  Google Scholar 

Zha A, Vahidy F, Randhawa J, Parsha K, Bui T, Aronowski J, Savitz SI (2018) Association between splenic contraction and the systemic inflammatory response after acute ischemic stroke varies with age and race. Transl Stroke Res 9:484–492. https://doi.org/10.1007/s12975-017-0596-5

Article  PubMed  Google Scholar 

Cruz-Romero C, Agarwal S, Abujudeh HH, Thrall J, Hahn PF (2016) Spleen volume on CT and the effect of abdominal trauma. Emerg Radiol 23:315–323. https://doi.org/10.1007/s10140-016-1402-5

Article  PubMed  Google Scholar 

Schagatay E, Hubinette A, Lodin-Sundström A, Engan H, Stenfors N (2015) Exercise induced hemoconcentration following spleen contraction in subjects with COPD. COPD Res Pract 1:13. https://doi.org/10.1186/s40749-015-0015-9

Article  Google Scholar 

Schagatay E, Lunde A, Nilsson S, Palm O, Lodin-Sundström A (2020) Spleen contraction elevates hemoglobin concentration at high altitude during rest and exercise. Eur J Appl Physiol 120:2693–2704. https://doi.org/10.1007/s00421-020-04471-w

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HWM, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329. https://doi.org/10.1038/nature11260

留言 (0)

沒有登入
gif