The Clash of Two Epidemics: the Relationship Between Opioids and Glucose Metabolism

Degenhardt L, et al. Global patterns of opioid use and dependence: harms to populations, interventions, and future action. Lancet. 2019;394(10208):1560–79.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schieber LZ, et al. Trends and patterns of geographic variation in opioid prescribing practices by State, United States, 2006–2017. JAMA Netw Open. 2019;2(3):e190665.

PubMed  PubMed Central  Article  Google Scholar 

Board, I.N.C. Narcotic Drugs: Estimated World Requirements for 2019. 2018.

DeWeerdt S. Tracing the US opioid crisis to its roots. Nature. 2019;573(7773):S10–2.

CAS  PubMed  Article  Google Scholar 

Boudreau D, et al. Trends in long-term opioid therapy for chronic non-cancer pain. Pharmacoepidemiol Drug Saf. 2009;18(12):1166–75.

PubMed  PubMed Central  Article  Google Scholar 

Nahin RL, et al. Eighteen-year trends in the prevalence of, and health care use for, noncancer pain in the United States: Data from the medical expenditure panel survey. J Pain. 2019;20(7):796–809.

PubMed  Article  Google Scholar 

Stewart GN, Rogoff JM. Morphine, hyperglycemia and the adrenals. Am J Physiol Legacy Content. 1922;62(1):93–112.

CAS  Article  Google Scholar 

Reed JL, Ghodse AH. Oral glucose tolerance and hormonal response in heroin-dependent males. Br Med J. 1973;2(5866):582–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vescovi PP, et al. Glucose tolerance in opiate addicts. Diabetologia. 1982;23(5):459.

CAS  PubMed  Article  Google Scholar 

Ceriello A, et al. Impaired glucose metabolism in heroin and methadone users. Horm Metab Res. 1987;19(9):430–3.

CAS  PubMed  Article  Google Scholar 

Passariello N, et al. Glucose tolerance and hormonal responses in heroin addicts. A possible role for endogenous opiates in the pathogenesis of non-insulin-dependent diabetes. Metabolism. 1983;32(12):1163–5.

CAS  PubMed  Article  Google Scholar 

Okifuji A, Hare BD. The association between chronic pain and obesity. J Pain Res. 2015;8:399–408.

PubMed  PubMed Central  Article  Google Scholar 

Stokes A, et al. Obesity and incident prescription opioid use in the U.S., 2000–2015. Am J Prev Med. 2020;58(6):766–75.

PubMed  Article  Google Scholar 

Stokes A, et al. The contribution of obesity to prescription opioid use in the United States. Pain. 2019;160(10):2255–62.

PubMed  PubMed Central  Article  Google Scholar 

Li CH, Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A. 1976;73(4):1145–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hughes J, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258(5536):577–80.

CAS  PubMed  Article  Google Scholar 

Goldstein A, et al. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A. 1979;76(12):6666–70.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zadina JE, et al. A potent and selective endogenous agonist for the mu-opiate receptor. Nature. 1997;386(6624):499–502.

CAS  PubMed  Article  Google Scholar 

Holzer P. Opioid receptors in the gastrointestinal tract. Regul Pept. 2009;155(1–3):11–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Young EA, Lewis J, Akil H. The preferential release of beta-endorphin from the anterior pituitary lobe by corticotropin releasing factor (CRF). Peptides. 1986;7(4):603–7.

CAS  PubMed  Article  Google Scholar 

Plein LM, Rittner HL. Opioids and the immune system - friend or foe. Br J Pharmacol. 2018;175(14):2717–25.

CAS  PubMed  Article  Google Scholar 

Chang KJ, et al. Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol. 1979;16(1):91–104.

CAS  PubMed  Google Scholar 

Goldstein A, Naidu A. Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol. 1989;36(2):265–72.

CAS  PubMed  Google Scholar 

Wittert G, Hope P, Pyle D. Tissue distribution of opioid receptor gene expression in the rat. Biochem Biophys Res Commun. 1996;218(3):877–81.

CAS  PubMed  Article  Google Scholar 

Kerrigan S, Goldberger BA. Opioids. In: Levine BS, Kerrigan S, editors. Principles of Forensic Toxicology. Cham: Springer International Publishing; 2020. p. 347–69.

Chapter  Google Scholar 

Ayoo K, et al. The opioid crisis in North America: facts and future lessons for Europe. Anaesthesiol Intensive Ther. 2020;52(2):139–47.

PubMed  Article  Google Scholar 

Madariaga-Mazon A, et al. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today. 2017;22(11):1719–29.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Benarroch EE. Endogenous opioid systems: current concepts and clinical correlations. Neurology. 2012;79(8):807–14.

PubMed  Article  Google Scholar 

Shenoy SS, Lui F. Biochemistry, endogenous opioids. Treasure Island: StatPearls; 2021.

Google Scholar 

Surwit RS, et al. Differential glycemic effects of morphine in diabetic and normal mice. Metabolism. 1989;38(3):282–5.

CAS  PubMed  Article  Google Scholar 

Feldberg W, Shaligram SV. The hyperglycaemic effect of morphine. Br J Pharmacol. 1972;46(4):602–18.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lux F, Brase DA, Dewey WL. Differential effects of subcutaneous and intrathecal morphine administration on blood glucose in mice: comparison with intracerebroventricular administration. J Pharmacol Exp Ther. 1988;245(1):187–94.

CAS  PubMed  Google Scholar 

Borison HL, et al. Morphine-induced hyperglycemia in the cat. J Pharmacol Exp Ther. 1962;138:229–35.

CAS  PubMed  Google Scholar 

Park SH, et al. Characterization of blood glucose level regulation in mouse opioid withdrawal models. Neurosci Lett. 2010;476(3):119–22.

CAS  PubMed  Article  Google Scholar 

Szeto HH, et al. Lack of relationship between opioid-induced changes in fetal breathing and plasma glucose levels. Am J Physiol. 1995;269(3 Pt 2):R702–7.

CAS  PubMed  Google Scholar 

Ambrisko TD, Hikasa Y, Sato K. Influence of medetomidine on stress-related neurohormonal and metabolic effects caused by butorphanol, fentanyl, and ketamine administration in dogs. Am J Vet Res. 2005;66(3):406–12.

CAS  PubMed  Article  Google Scholar 

Johansen O, et al. Increased plasma glucose levels after Hypnorm anaesthesia, but not after Pentobarbital anaesthesia in rats. Lab Anim. 1994;28(3):244–8.

CAS  PubMed  Article  Google Scholar 

Szeto HH, et al. Opioid modulation of fetal glucose homeostasis: role of receptor subtypes. J Pharmacol Exp Ther. 1995;275(1):334–9.

CAS  PubMed  Google Scholar 

Tuduri E, et al. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology. 2016;110(Pt A):322–32.

CAS  PubMed  Article  Google Scholar 

Fatouros IG, et al. Beta-endorphin infusion alters pancreatic hormone and glucose levels during exercise in rats. Eur J Appl Physiol Occup Physiol. 1997;76(3):203–8.

CAS  PubMed  Article  Google Scholar 

Giugliano D, et al. Beta-endorphin-induced inhibition and stimulation of insulin secretion in normal humans is glucose dependent. Diabetes. 1988;37(9):1265–70.

CAS  PubMed  Article  Google Scholar 

Giugliano D, et al. Dual effect of beta-endorphin on insulin secretion in man. Horm Metab Res. 1987;19(10):502–3.

CAS  PubMed  Article  Google Scholar 

Matsumura M, et al. In vivo and in vitro effects of beta-endorphin on glucose metabolism in the rat. Horm Metab Res. 1984;16(1):27–31.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif