Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine

Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, Krapfenbauer K, Mozaffari MS, Costigliola V. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7:23. https://doi.org/10.1186/s13167-016-0072-4.

Article  PubMed  PubMed Central  Google Scholar 

Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73. https://doi.org/10.1161/01.RES.0000255691.76142.4a.

CAS  Article  PubMed  Google Scholar 

Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds Circ Res. 2007;100:174–90. https://doi.org/10.1161/01.RES.0000255690.03436.ae.

CAS  Article  PubMed  Google Scholar 

Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20:589–610. https://doi.org/10.1038/s41573-021-00198-1.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–95. https://doi.org/10.1161/CIRCULATIONAHA.106.652859.

Article  PubMed  Google Scholar 

Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta. 2013;1832:2216–31. https://doi.org/10.1016/j.bbadis.2013.08.006.

CAS  Article  PubMed  Google Scholar 

Jannaway M, Yang X, Meegan JE, Coleman DC, Yuan SY. Thrombin-cleaved syndecan-3/-4 ectodomain fragments mediate endothelial barrier dysfunction. PLoS ONE. 2019;14: e0214737. https://doi.org/10.1371/journal.pone.0214737.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Piotti A, Novelli D, Meessen JMTA, Ferlicca D, Coppolecchia S, Marino A, Salati G, Savioli M, Grasselli G, Bellani G, Pesenti A, Masson S, Caironi P, Gattinoni L, Gobbi M, Fracasso C, Latini R, ALBIOS Investigators. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Crit Care. 2021;25:113. https://doi.org/10.1186/s13054-021-03545-1.

Article  PubMed  PubMed Central  Google Scholar 

Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev. 2019;99:1467–525. https://doi.org/10.1152/physrev.00037.2018.

CAS  Article  PubMed  Google Scholar 

Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016;119:375–96. https://doi.org/10.1161/CIRCRESAHA.116.306531.

CAS  Article  PubMed  Google Scholar 

Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol Med. 2000;6:347–73. https://doi.org/10.1007/BF03401781.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Park-Windhol C, D’Amore PA. Disorders of vascular permeability. Annu Rev Pathol. 2016;11:251–81. https://doi.org/10.1146/annurev-pathol-012615-044506.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wenceslau CF, McCarthy CG, Szasz T, Goulopoulou S, Webb RC. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am J Physiol Heart Circ Physiol. 2015;308:H768–77. https://doi.org/10.1152/ajpheart.00779.2014.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Exp Rev Mol Med. 2009;11: e19. https://doi.org/10.1017/S1462399409001112.

Article  Google Scholar 

Rodrigues EB, Farah ME, Maia M, Penha FM, Regatieri C, Melo GB, Pinheiro MM, Zanetti CR. Therapeutic monoclonal antibodies in ophthalmology. Prog Retin Eye Res. 2009;28:117–44. https://doi.org/10.1016/j.preteyeres.2008.11.005.

CAS  Article  PubMed  Google Scholar 

Alves NG, Trujillo AN, Breslin JW, Yuan SY. Sphingosine-1-phosphate reduces hemorrhagic shock and resuscitation-induced microvascular leakage by protecting endothelial mitochondrial integrity. Shock. 2019;52:423–33. https://doi.org/10.1097/SHK.0000000000001280.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Alves NG, Yuan SY, Breslin JW. Sphingosine-1-phosphate protects against brain microvascular endothelial junctional protein disorganization and barrier dysfunction caused by alcohol. Microcirculation. 2019;26: e12506. https://doi.org/10.1111/micc.12506.

CAS  Article  PubMed  Google Scholar 

Yonekawa K, Harlan JM. Targeting leukocyte integrins in human diseases. J Leukoc Biol. 2005;77:129–40. https://doi.org/10.1189/jlb.0804460.

CAS  Article  PubMed  Google Scholar 

Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc Res. 2008;78:413–21. https://doi.org/10.1093/cvr/cvn081.

CAS  Article  PubMed  Google Scholar 

Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–51. https://doi.org/10.1056/NEJM198610233151702.

CAS  Article  PubMed  Google Scholar 

Tousoulis D, Davies G, Lefroy DC. Variable coronary vasomotor responses to acetylcholine in patients with normal coronary arteriograms: evidence for localised endothelial dysfunction. Heart. 1996;75:261–6. https://doi.org/10.1136/hrt.75.3.261.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ding D, Yang J, Westra J, Chen Y, Chang Y, Sejr-Hansen M, Zhang S, Christiansen EH, Holm NR, Xu B, Tu S. Accuracy of 3-dimensional and 2-dimensional quantitative coronary angiography for predicting physiological significance of coronary stenosis: a FAVOR II substudy. Cardiovasc Diagn Ther. 2019;9:481–91. https://doi.org/10.21037/cdt.2019.09.07.

Article  PubMed  PubMed Central  Google Scholar 

Lee J, Seo KW, Yang HM, Lim HS, Choi BJ, Choi SY, Tahk SJ, Yoon MH. Comparison of three-dimensional quantitative coronary angiography and intravascular ultrasound for detecting functionally significant coronary lesions. Cardiovasc Diagn Ther. 2020;10:1256–63. https://doi.org/10.21037/cdt-20-560.

Article  PubMed  PubMed Central  Google Scholar 

Zhang YJ, Zhu H, Shi SY, Muramatsu T, Pan DR, Ye F, Zhang JJ, Tian NL, Bourantas CV, Chen SL. Comparison between two-dimensional and three-dimensional quantitative coronary angiography for the prediction of functional severity in true bifurcation lesions: insights from the randomized DK-CRUSH II, III, and IV trials. Catheter Cardiovasc Interv. 2016;87(Suppl 1):589–98. https://doi.org/10.1002/ccd.26405.

Article  PubMed  Google Scholar 

Porto I, Biasucci LM, De Maria GL, Leone AM, Niccoli G, Burzotta F, Trani C, Tritarelli A, Vergallo R, Liuzzo G, Crea F. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur Heart J. 2012;33:2928–38. https://doi.org/10.1093/eurheartj/ehs065.

Article  PubMed  Google Scholar 

Voros S, Rinehart S, Vazquez-Figueroa JG, Kalynych A, Karmpaliotis D, Qian Z, Joshi PH, Anderson H, Murrieta L, Wilmer C, Carlson H, Ballard W, Brown C. Prospective, head-to-head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and severe lesions, using fractional flow reserve as reference standard (from the ATLANTA I and II Study). Am J Cardiol. 2014;113:23–9. https://doi.org/10.1016/j.amjcard.2013.09.010.

Article  PubMed  Google Scholar 

Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis Nat Rev Dis Primers. 2019;5:56. https://doi.org/10.1038/s41572-019-0106-z.

Article  PubMed  Google Scholar 

Hewlett AW, Van Zwaluwenburg JG. Method for estimating the blood flow in the arm: PRELIMINARY REPORT. Arch Intern Med (Chic). 1909;III(3):254–6. https://doi.org/10.1001/archinte.1909.00050140084007.

Article  Google Scholar 

Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, Lüscher TF. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995;91:1314–9. https://doi.org/10.1161/01.cir.91.5.1314.

CAS  Article  PubMed  Google Scholar 

Kraemer-Aguiar LG, de Miranda ML, Bottino DA, Lima Rde A, de Souza Md, Balarini Mde M, Villela NR, Bouskela E. Increment of body mass index is positively correlated with worsening of endothelium-dependent and independent changes in forearm blood flow. Front Physiol. 2015;6:223. https://doi.org/10.3389/fphys.2015.00223.

Article  PubMed  PubMed Central  Google Scholar 

Salisbury DL, Brown RJ, Bronas UG, Kirk LN, Treat-Jacobson D. Measurement of peripheral blood flow in patients with peripheral artery disease: methods and considerations. Vasc Med. 2018;23:163–71. https://doi.org/10.1177/1358863X17751654.

Article  PubMed  Google Scholar 

Petrie JR, Ueda S, Morris AD, Murray LS, Elliott HL, Connell JM. How reproducible is bilateral forearm plethysmography? Br J Clin Pharmacol. 1998;45:131–9. https://doi.org/10.1046/j.1365-2125.1998.00656.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sena CM, Nunes E, Louro T, Proença T, Fernandes R, Boarder MR, Seiça RM. Effects of alpha-lipoic acid on endothelial function in aged diabetic and high-fat fed rats. Br J Pharmacol. 2008;153:894–906. https://doi.org/10.1038/sj.bjp.0707474.

CAS  Article  PubMed  Google Scholar 

Sena CM, Matafome P, Louro T, Nunes E, Fernandes R, Seiça RM. Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol. 2011;163:424–37. https://doi.org/10.1111/j.1476-5381.2011.01230.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pereira A, Fernandes R, Crisóstomo J, Seiça RM, Sena CM. The sulforaphane and pyridoxamine supplementation

留言 (0)

沒有登入
gif