Structural and functional specificity of H3K36 methylation

Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

CAS  PubMed  PubMed Central  Article  Google Scholar 

Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

CAS  PubMed  Article  Google Scholar 

Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

CAS  PubMed  Article  Google Scholar 

Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A et al (2017) Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol Cell 66:384-397.e8

CAS  PubMed  PubMed Central  Article  Google Scholar 

Healton SE, Pinto HD, Mishra LN, Hamilton GA, Wheat JC, Swist-Rosowska K et al (2020) H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc Natl Acad Sci 117:14251–14258

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shahid Z, Simpson B, Singh G (2019) Genetics, histone code. StatPearls Publishing, St. Petersburg

Google Scholar 

Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

CAS  PubMed  Article  Google Scholar 

Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

CAS  PubMed  Article  Google Scholar 

Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

CAS  PubMed  Article  Google Scholar 

Prakash K, Fournier D (2018) Evidence for the implication of the histone code in building the genome structure. BioSystems 164:49–59

CAS  PubMed  Article  Google Scholar 

O’Hagan HM (2014) Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. Environ Mol Mutagen 55:278–291

PubMed  Article  CAS  Google Scholar 

Lim KK, Nguyen TTT, Li AY, Yeo YP, Chen ES (2018) Histone H3 lysine 36 methyltransferase mobilizes NER factors to regulate tolerance against alkylation damage in fission yeast. Nucleic Acids Res 46:5061–5074

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA, Masumoto H et al (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

CAS  PubMed  Article  Google Scholar 

Alper BJ, Lowe BR, Partridge JF (2012) Centromeric heterochromatin assembly in fission yeast-balancing transcription, RNA interference and chromatin modification. Chromosome Res 20:521–534

CAS  PubMed  PubMed Central  Article  Google Scholar 

Park IY, Powell RT, Tripathi DN, Dere R, Ho TH, Blasius TL et al (2016) Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166:950–962

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE et al (2017) Set2 methyltransferase facilitates DNA replication and promotes genotoxic stress responses through MBF-dependent transcription. Cell Rep 20:2693–2705

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R et al (2018) Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity. Nucleic Acids Res 46:1331–1344

CAS  PubMed  Article  Google Scholar 

Dong Y, Zhao X, Feng X, Zhou Y, Yan X, Zhang Y et al (2019) SETD2 mutations confer chemoresistance in acute myeloid leukemia partly through altered cell cycle checkpoints. Leukemia 33:2585–2598

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rayasam GV, Wendling O, Angrand P-O, Mark M, Niederreither K, Song L et al (2003) NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 22:3153–3163

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown MA, Sims RJ, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tanaka Y, Katagiri Z, Kawahashi K, Kioussis D, Kitajima S (2007) Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 397:161–168

CAS  PubMed  Article  Google Scholar 

Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R et al (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci 106:21830–21835

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury WJ et al (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284:34283–34295

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J et al (2011) NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44:609–620

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yuan W, Xie J, Long C, Erdjument-Bromage H, Ding X, Zheng Y et al (2009) Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/set2 complex required for H3 Lys-36 trimethylation activity in vivo. J Biol Chem 284:15701–15707

CAS  PubMed  PubMed Central  Article  Google Scholar 

Eom GH, Kim KB, Kim JH, Kim JY, Kim JR, Kee HJ et al (2011) Histone methyltransferase SETD3 regulates muscle differentiation. J Biol Chem 286:34733–34742

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13:115–126

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun Z, Zhang Y, Jia J, Fang Y, Tang Y, Wu H et al (2020) H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 10:1–9

CAS  Article  Google Scholar 

Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu RM (2011) The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem 286:8361–8368

CAS  PubMed  Article  Google Scholar 

Lucio-Eterovic AK, Singh MM, Gardner JE, Veerappan CS, Rice JC, Carpenter PB (2010) Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function. Proc Natl Acad Sci 107:16952–16957

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T et al (2007) Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol 27:8466–8479

CAS  PubMed  PubMed Central  Article  Google Scholar 

McDaniel SL, Strahl BD (2017) Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 74:3317–3334

CAS  PubMed  PubMed Central  Article  Google Scholar 

Suzuki S, Kato H, Suzuki Y, Chikashige Y, Hiraoka Y, Kimura H et al (2016) Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Res 44:4147–4162

CAS  PubMed  PubMed Central  Article  Google Scholar 

Strahl BD, Grant PA, Briggs SD, Sun Z-W, Bone JR, Caldwell JA et al (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22:1298–1306

CAS  PubMed  PubMed Central  Article  Google Scholar 

Venkatesh S, Workman JL (2013) Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. Wiley Interdiscip Rev Dev Biol 2:685–700

CAS  PubMed  PubMed Central  Article  Google Scholar 

留言 (0)

沒有登入
gif