Hypothyroidism

Mehran, L. et al. Evaluation of the congenital hypothyroidism screening programme in Iran: a 3-year retrospective cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 104, F176–F181 (2019).

PubMed  Google Scholar 

Deladoey, J., Ruel, J., Giguere, Y. & Van Vliet, G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J. Clin. Endocrinol. Metab. 96, 2422–2429 (2011).

CAS  PubMed  Google Scholar 

Canaris, G. J., Steiner, J. F. & Ridgway, E. C. Do traditional symptoms of hypothyroidism correlate with biochemical disease? J. Gen. Intern. Med. 12, 544–550 (1997).

CAS  PubMed  PubMed Central  Google Scholar 

Kantor, E. D., Rehm, C. D., Haas, J. S., Chan, A. T. & Giovannucci, E. L. Trends in prescription drug use among adults in the United States from 1999-2012. JAMA 314, 1818–1831 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

ClinCalc DrugStats Database. Levothyroxine: Drug Usage Statistics, U. S., 2013–2019. ClinCalc.com https://clincalc.com/DrugStats/Drugs/Levothyroxine (2021).

Brito, J. P. et al. Levothyroxine use in the United States, 2008-2018. JAMA Intern. Med. 181, 1402–1405 (2021).

CAS  PubMed  Google Scholar 

Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 24, 1670–1751 (2014).

PubMed  PubMed Central  Google Scholar 

Hollowell, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

CAS  PubMed  Google Scholar 

Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado Thyroid Disease Prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

CAS  PubMed  Google Scholar 

Garmendia Madariaga, A., Santos Palacios, S., Guillen-Grima, F. & Galofre, J. C. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J. Clin. Endocrinol. Metab. 99, 923–931 (2014).

PubMed  Google Scholar 

Zimmermann, M. B. & Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 3, 286–295 (2015).

CAS  PubMed  Google Scholar 

Pedersen, I. B. et al. A cautious iodization programme bringing iodine intake to a low recommended level is associated with an increase in the prevalence of thyroid autoantibodies in the population. Clin. Endocrinol. 75, 120–126 (2011).

CAS  Google Scholar 

Teumer, A. et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat. Commun. 9, 4455 (2018).

PubMed  PubMed Central  Google Scholar 

Vanderpump, M. P. The epidemiology of thyroid disease. Br. Med. Bull. 99, 39–51 (2011).

PubMed  Google Scholar 

Belin, R. M., Astor, B. C., Powe, N. R. & Ladenson, P. W. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the third National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 89, 6077–6086 (2004).

CAS  PubMed  Google Scholar 

Chaker, L. et al. Thyroid function characteristics and determinants: the rotterdam study. Thyroid 26, 1195–1204 (2016).

CAS  PubMed  Google Scholar 

Kus, A. et al. Variation in normal range thyroid function affects serum cholesterol levels, blood pressure, and type 2 diabetes risk: a mendelian randomization study. Thyroid 31, 721–731 (2021).

CAS  PubMed  Google Scholar 

Wang, X. et al. Causal association between serum thyrotropin and obesity: a bidirectional, mendelian randomization study. J. Clin. Endocrinol. Metab. 106, e4251–e4259 (2021).

PubMed  PubMed Central  Google Scholar 

Liu, C. et al. Small for gestational age is a risk factor for thyroid dysfunction in preterm newborns. BMC Pediatr. 20, 179 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Asakura, Y., Tachibana, K., Adachi, M., Suwa, S. & Yamagami, Y. Hypothalamo-pituitary hypothyroidism detected by neonatal screening for congenital hypothyroidism using measurement of thyroid-stimulating hormone and thyroxine. Acta Paediatr. 91, 172–177 (2002).

CAS  PubMed  Google Scholar 

Kempers, M. J. et al. Neonatal screening for congenital hypothyroidism based on thyroxine, thyrotropin, and thyroxine-binding globulin measurement: potentials and pitfalls. J. Clin. Endocrinol. Metab. 91, 3370–3376 (2006).

CAS  PubMed  Google Scholar 

Wright, J. J., Powers, A. C. & Johnson, D. B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 17, 389–399 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Maynard, M. A. et al. Thyroid hormone inactivation in gastrointestinal stromal tumors. N. Engl. J. Med. 370, 1327–1334 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Fekete, C. & Lechan, R. M. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr. Rev. 35, 159–194 (2014).

CAS  PubMed  Google Scholar 

Brabant, G. et al. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J. Clin. Endocrinol. Metab. 70, 403–409 (1990).

CAS  PubMed  Google Scholar 

Kopp, P. in Werner & Ingbar’s the Thyroid: A Fundamental and Clinical Text Ch. 6, 97–126 (Wolters Kluwer, 2021).

Schweizer, U., Johannes, J., Bayer, D. & Braun, D. Structure and function of thyroid hormone plasma membrane transporters. Eur. Thyroid J. 3, 143–153 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Ortiga-Carvalho, T. M., Sidhaye, A. R. & Wondisford, F. E. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 10, 582–591 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Peeters, R. P., van der Deure, W. M. & Visser, T. J. Genetic variation in thyroid hormone pathway genes; polymorphisms in the TSH receptor and the iodothyronine deiodinases. Eur. J. Endocrinol. 155, 655–662 (2006).

CAS  PubMed  Google Scholar 

Drigo, R. A. & Bianco, A. C. Type 2 deiodinase at the crossroads of thyroid hormone action. Int. J. Biochem. Cell Biol. 43, 1432–1441 (2011).

Google Scholar 

Schweizer, U. & Steegborn, C. New insights into the structure and mechanism of iodothyronine deiodinases. J. Mol. Endocrinol. 55, R37–R52 (2015).

CAS  PubMed  Google Scholar 

Merrill, S. J. & Minucci, S. B. Thyroid autoimmunity: an interplay of factors. Vitam. Hormones 106, 129–145 (2018).

CAS  Google Scholar 

Glinoer, D., Riahi, M., Grün, J.-P. & Kinthaert, J. Risk of subclinical hypothyroidism in pregnant women with asymptomatic autoimmune thyroid disorders. J. Clin. Endocrinol. Metab. 79, 197–204 (1994).

CAS  PubMed  Google Scholar 

Alexander, E. K. et al. 2017 Guidelines of the american thyroid association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 27, 315–389 (2017).

PubMed  Google Scholar 

Nazarpour, S., Tehrani, F. R., Amiri, M., Yarandi, R. B. & Azizi, F. Levothyroxine treatment and pregnancy outcomes in women with subclinical hypothyroidism: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 300, 805–819 (2019).

CAS  PubMed  Google Scholar 

Derakhshan, A. et al. The association of maternal thyroid autoimmunity during pregnancy with child IQ. J. Clin. Endocrinol. Metab. 103, 3729–3736 (2018).

PubMed  Google Scholar 

Theofilopoulos, A. N., Kono, D. H. & Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 18, 716–724 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Rapoport, B. & McLachlan, S. M. Reflections on thyroid autoimmunity: a personal overview from the past into the future. Horm. Metab. Res. 50, 840–852 (2018).

CAS  PubMed  Google Scholar 

Wu, F. et al. Decreased β-catenin expression contributes to IFNγ-induced chemokine secretion and lymphocyte infiltration in Hashimoto’s thyroiditis. Endocr. Connect. 11, e210451 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Azizi, F. et al. Impairment of neuromotor and cognitive development in iodine-deficient schoolchildren with normal physical growth. Eur. J. Endocrinol. 129, 501–504 (1993).

CAS  Google Scholar 

Wolff, J. et al. The temporary nature of the inhibitory action of excess iodine on organic iodine synthesis in the normal thyroid. Endocrinology 45, 504–513 (1949).

CAS  PubMed  Google Scholar 

Leung, A. M. & Braverman, L. E. Iodine-induced thyroid dysfunction. Curr. Opin. Endocrinol. Diabetes Obes. 19, 414 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Rayman, M. P. Selenium and human health. Lancet 379, 1256–1268 (2012).

CAS  PubMed  Google Scholar 

Wu, Q. et al. Low population selenium status is associated with increased prevalence of thyroid disease. J. Clin. Endocrinol. Metab. 100, 4037–4047 (2015).

CAS  PubMed  Google Scholar 

Aung, E. T. et al. Predicting outcomes and complications following radioiodine therapy in Graves’ thyrotoxicosis. Clin. Endocrinol. 90, 192–199 (2019).

Google Scholar 

Kahraman, D. et al. Development of hypothyroidism during long-term follow-up of patients with toxic nodular goitre after radioiodine therapy. Clin. Endocrinol. 76, 297–303 (2012).

CAS  Google Scholar 

Bonnema, S. J. et al. The feasibility of high dose iodine 131 treatment as an alternative to surgery in patients with a very large goiter: effect on thyroid function and size and pulmonary function. J. Clin. Endocrinol. Metab. 84, 3636–3641 (1999).

CAS 

留言 (0)

沒有登入
gif