DNA methylation may affect beef tenderness through signal transduction in Bos indicus

Verbeke W, de Wezemael L, de Barcellos MD, Kugler JO, Hocquette JF, Ueland O, et al. European beef consumers’ interest in a beef eating-quality guarantee Insights from a qualitative study in four EU countries. Appetite. 2010;54(2):289–96.

PubMed  Article  Google Scholar 

Judge MM, Conroy S, Hegarty PJ, Cromie AR, Fanning R, Kelly D, et al. Eating quality of the longissimus thoracis muscle in beef cattle – Contributing factors to the underlying variability and associations with performance traits. Meat Sci. 2021;172:108371.

CAS  PubMed  Article  Google Scholar 

O’Connor SF, Tatum JD, Wulf DM, Green RD, Smith GC. Genetic effects on beef tenderness in Bos indicus composite and Bos taurus cattle. J Anim Sci. 1997;75(7):1822–30.

PubMed  Article  Google Scholar 

USDA USD of A. Livestock and Poultry: World Markets and Trade. 2021. https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf

Leal-Gutiérrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics. 2019. https://doi.org/10.1186/s12864-019-5518-3.

Article  PubMed  PubMed Central  Google Scholar 

Tizioto PC, Decker JE, Taylor JF, Schnabel RD, Mudadu MA, Silva FL, et al. Genome scan for meat quality traits in Nelore beef cattle. Physiol Genomics. 2013;45(21):1012–20. https://doi.org/10.1152/physiolgenomics.00066.2013.

CAS  Article  PubMed  Google Scholar 

de Souza MM, Zerlotini A, Rocha MIP, Bruscadin JJ, Diniz WJS, Cardoso TF, et al. Allele-specific expression is widespread in Bos indicus muscle and affects meat quality candidate genes. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-67089-0.

Article  PubMed  PubMed Central  Google Scholar 

Gonçalves TM, de Almeida Regitano LC, Koltes JE, Cesar ASM, da Silva Andrade SC, Mourão GB, et al. Gene Co-expression Analysis Indicates Potential Pathways and Regulators of Beef Tenderness in Nellore Cattle. Front Genet. 2018;9:441. https://doi.org/10.3389/fgene.2018.00441/full.

Article  PubMed  PubMed Central  Google Scholar 

Kappeler BIG, Regitano LCA, Poleti MD, Cesar ASM, Moreira GCM, Gasparin G, et al. MiRNAs differentially expressed in skeletal muscle of animals with divergent estimated breeding values for beef tenderness. BMC Mol Biol. 2019. https://doi.org/10.1186/s12867-018-0118-3.

Article  PubMed  PubMed Central  Google Scholar 

da Silva VH, Regitano LCA, Geistlinger L, Pértille F, Giachetto PF, Brassaloti RA, et al. Genome-Wide Detection of CNVs and Their Association with Meat Tenderness in Nelore Cattle. PLoS ONE. 2016;11(6):e0157711.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tizioto PC, Gasparin G, Souza MM, Mudadu MA, Coutinho LL, Mourão GB, et al. Identification of KCNJ11 as a functional candidate gene for bovine meat tenderness. Physiol Genomics. 2013;45(24):1215–21.

PubMed  Article  CAS  Google Scholar 

Bradbury J. Human epigenome project–up and running. PLoS Biol. 2003;1(3):E82.

PubMed  PubMed Central  Article  Google Scholar 

Lieb JD, Beck S, Bulyk ML, Farnham P, Hattori N, Henikoff S, et al. Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenet Genome Res. 2006;114(1):1–15.

CAS  PubMed  Article  Google Scholar 

Enright BP, Jeong BS, Yang X, Tian XC. Epigenetic characteristics of bovine donor cells for nuclear transfer: levels of histone acetylation. Biol Reprod. 2003;69(5):1525–30.

CAS  PubMed  Article  Google Scholar 

Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010;44(1):71–81.

CAS  PubMed  Article  Google Scholar 

Attar N. The allure of the epigenome. Genome Biol. 2012;13(10):419.

PubMed  PubMed Central  Article  Google Scholar 

Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15(4):r54.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23:555–85.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet. 2021. https://doi.org/10.3389/fgene.2020.613636.

Article  PubMed  PubMed Central  Google Scholar 

Zhao C, Ji G, Carrillo JA, Li Y, Tian F, Baldwin RL, et al. The Profiling of DNA Methylation and Its Regulation on Divergent Tenderness in Angus Beef Cattle. Front Genet. 2020;12:9.

Google Scholar 

Huang YZ, Sun JJ, Zhang LZ, Li CJ, Womack JE, Li ZJ, et al. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Sci Rep. 2014;3:78.

Google Scholar 

Liu L, Amorín R, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Maternal methionine supplementation during gestation alters alternative splicing and DNA methylation in bovine skeletal muscle. BMC Genomics. 2021;22(1):1–11. https://doi.org/10.1186/s12864-021-08065-4.

CAS  Article  Google Scholar 

Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, et al. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun. 2021;12:1.

Article  CAS  Google Scholar 

Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:10.

Article  Google Scholar 

Mudadu MA, Porto-Neto LR, Mokry FB, Tizioto PC, Oliveira PSN, Tullio RR, et al. Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle. BMC Genomics. 2016;17(1):235.

PubMed  PubMed Central  Article  CAS  Google Scholar 

McKay S, Betancourt F, Bhattarai S, Buttolph T, White S, Lachance H, et al. 115 Profiling Conservation of DNA Methylation in Cattle. J Anim Sci. 2018;96:370.

PubMed Central  Article  Google Scholar 

Oe M, Ojima K, Muroya S. Difference in potential DNA methylation impact on gene expression between fast- and slow-type myofibers. Physiol Genomics. 2021;23:405.

Google Scholar 

Lu X, Yang Y, Zhang Y, Mao Y, Liang R, Zhu L, et al. The relationship between myofiber characteristics and meat quality of Chinese Qinchuan and Luxi cattle. Anim Biosci. 2021;34:743.

CAS  PubMed  Article  Google Scholar 

Guttridge DC. Making muscles grow by G protein-coupled receptor signaling. Sci Signaling. 2011. https://doi.org/10.1126/scisignal.2002670.

Article  Google Scholar 

Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 2015;7:6032.

Article  Google Scholar 

Sah VP, Seasholtz TM, Sagi SA, Brown JH. The role of Rho in G protein-coupled receptor signal transduction. Ann Rev Pharmacol Toxicol. 2000;40:459.

CAS  Article  Google Scholar 

Puetz S, Lubomirov LT, Pfitzer G. Regulation of smooth muscle contraction by small GTPases. Physiology. 2009;24:342.

CAS  PubMed  Article  Google Scholar 

Takano H, Komuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T, et al. The Rho Family G Proteins Play a Critical Role in Muscle Differentiation. Mol Cell Biol. 1998;18:1580.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V, Werner A, et al. Gαi2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration. Sci Signal. 2011. https://doi.org/10.1126/scisignal.2002038.

Article  PubMed  Google Scholar 

Stefani E, Chiarandini DJ. Ionic channels in skeletal muscle. Ann Rev Physiol. 1982;44:357.

CAS  Article  Google Scholar 

Taverna E, Saba E, Rowe J, Francolini M, Clementi F, Rosa P. Role of Lipid Microdomains in P/Q-type Calcium Channel (Cav21) Clustering and Function in Presynaptic Membranes. J Biol Chem. 2004;279(7):5127–34.

CAS  PubMed  Article  Google Scholar 

Leroy J, Richter W, Mika D, Castro LRV, Abi-Gerges A, Xie M, et al. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J Clin Invest. 2011;121(7):2651.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ouali A, Gagaoua M, Boudida Y, Becila S, Boudjellal A, Herrera-Mendez CH, et al. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci. 2013;95:805.

Article  CAS  Google Scholar 

Sunahara RK, Dessauer CW, Whisnant RE, Kleuss C, Gilman AG. Interaction of G(sα) with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem. 1997;272:22268.

Article  Google Scholar 

Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab. 2012;303:1–7.

Article  CAS  Google Scholar 

Khatib H. Imprinting of Nesp55 gene in cattle. Mamm Genome. 2004.

Chen Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, et al. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics. 2016;11:501.

PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif