Cold-adaptive traits identified by comparative genomic analysis of a lipase-producing Pseudomonas sp. HS6 isolated from snow-covered soil of Sikkim Himalaya and molecular simulation of lipase for wide substrate specificity

Abraham WP, Raghunandanan S, Gopinath V et al (2020) Deciphering the cold adaptive mechanisms in Pseudomonas psychrophila MTCC12324 isolated from the arctic at 79° N. Curr Microbiol 77:2345–2355. https://doi.org/10.1007/s00284-020-02006-2

CAS  Article  PubMed  Google Scholar 

Aliyu H, De Maayer P, Cowan D (2016) The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/FEMSEC/FIW032

Article  Google Scholar 

Asnicar F, Thomas AM, Beghini F et al (2020) Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 30. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-020-16366-7

CAS  Article  Google Scholar 

Ayala-Del-Río HL, Chain PS, Grzymski JJ et al (2010) The genome sequence of psychrobacter arcticus 273–4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312. https://doi.org/10.1128/AEM.02101-09

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles 13:59–66. https://doi.org/10.1007/s00792-008-0197-z

CAS  Article  PubMed  Google Scholar 

Aziz RK, Bartels D, Best AA et al (2008) (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 91(9):1–15. https://doi.org/10.1186/1471-2164-9-75

CAS  Article  Google Scholar 

Bowman JP (2017) Genomics of psychrophilic bacteria and archaea. Psychrophiles: from biodiversity to biotechnology, 2nd edn. Springer, Cham, pp 345–387

Chapter  Google Scholar 

Chen Y, Cheong LZ, Zhao J et al (2019) Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: modeling the binding affinity of lipases and fatty acids. Int J Biol Macromol 123:261–268. https://doi.org/10.1016/J.IJBIOMAC.2018.11.049

CAS  Article  PubMed  Google Scholar 

Farooq S, Ganai SA, Ganai BA et al (2021) Molecular characterization of lipase from a psychrotrophic bacterium Pseudomonas sp. CRBC14. Curr Genet. https://doi.org/10.1007/s00294-021-01224-w

Article  PubMed  Google Scholar 

Frank S, Schmidt F, Klockgether J et al (2011) Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS Microbiol Lett 318:47–54. https://doi.org/10.1111/J.1574-6968.2011.02237.X

CAS  Article  PubMed  Google Scholar 

Giuliodori AM, Di Pietro F, Marzi S et al (2010) The cspA mRNA Is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37:21–33. https://doi.org/10.1016/j.molcel.2009.11.033

CAS  Article  PubMed  Google Scholar 

Godan TK, Rajesh RO, Loreni PC et al (2019) Biotransformation of 5-hydroxymethylfurfural by Acinetobacter oleivorans S27 for the synthesis of furan derivatives. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.02.125

Article  PubMed  Google Scholar 

Goordial J, Raymond-Bouchard I, Zolotarov Y et al (2016) Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fiv154

CAS  Article  Google Scholar 

Goverde RLJ, Huisintveld JHJ, Kusters JG, Mooi FR (1998) The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5°C). Mol Microbiol 28:555–569. https://doi.org/10.1046/J.1365-2958.1998.00816.X

CAS  Article  PubMed  Google Scholar 

Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184. https://doi.org/10.1093/NAR/GKN179

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gupta SK, Kataki S, Chatterjee S et al (2020) Cold adaptation in bacteria with special focus on cellulase production and its potential application. J Clean Prod 258:120351

CAS  Article  Google Scholar 

Ha S-M, Kim CK, Roh J et al (2019) Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 39:530. https://doi.org/10.3343/ALM.2019.39.6.530

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hooft RWW, Sander C, Vriend G (1997) Objectively judging the quality of a protein structure from a ramachandran plot. Bioinformatics 13:425–430. https://doi.org/10.1093/bioinformatics/13.4.425

CAS  Article  Google Scholar 

Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol A Enzym Eng Biotechnol 118:155–170. https://doi.org/10.1385/ABAB:118:1-3:155

CAS  Article  Google Scholar 

Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135. https://doi.org/10.1002/JCC.23354

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hyatt D, Chen G-L, LoCascio PF et al (2010) (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 111(11):1–11. https://doi.org/10.1186/1471-2105-11-119

CAS  Article  Google Scholar 

Jendele L, Krivak R, Skoda P et al (2019) PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res 47:W345–W349. https://doi.org/10.1093/NAR/GKZ424

CAS  Article  PubMed  PubMed Central  Google Scholar 

Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470. https://doi.org/10.1016/j.biotechadv.2008.05.003

CAS  Article  PubMed  Google Scholar 

Joseph B, Shrivastava N, Ramteke PW (2012) Extracellular cold-active lipase of Microbacterium luteolum isolated from Gangotri glacier, western Himalaya: Isolation, partial purification and characterization. J Genet Eng Biotechnol 10:137–144. https://doi.org/10.1016/j.jgeb.2012.02.001

CAS  Article  Google Scholar 

Jung SK, Dae GJ, Mi SL et al (2008) Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins Struct Funct Genet 71:476–484. https://doi.org/10.1002/prot.21884

CAS  Article  PubMed  Google Scholar 

Källberg M, Margaryan G, Wang S et al (2014) RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 1137:17–27. https://doi.org/10.1007/978-1-4939-0366-5_2

CAS  Article  PubMed  Google Scholar 

Keto-Timonen R, Hietala N, Palonen E et al (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front Microbiol 7:1–7. https://doi.org/10.3389/fmicb.2016.01151

Article  Google Scholar 

Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531. https://doi.org/10.1093/NAR/GKH468

CAS  Article  PubMed  PubMed Central  Google Scholar 

Koehorst JJ, van Dam JCJ, van Heck RGA et al (2016) (2016) Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 61(6):1–13. https://doi.org/10.1038/srep38699

CAS  Article  Google Scholar 

Kumar R, Acharya V, Mukhia S et al (2019) Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential. Genomics 111:492–499. https://doi.org/10.1016/j.ygeno.2018.03.008

CAS  Article  PubMed  Google Scholar 

Kumar A, Mukhia S, Kumar N et al (2020) A broad temperature active lipase purified from a psychrotrophic bacterium of Sikkim Himalaya with potential application in detergent formulation. Front Bioeng Biotechnol 8:642. https://doi.org/10.3389/FBIOE.2020.00642/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Kumari M, Padhi S, Sharma S et al (2021) Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech 11:479. https://doi.org/10.1007/s13205-021-03008-y

Article  PubMed  Google Scholar 

Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

CAS  Article  Google Scholar 

Li L, Yuan L, Shi Y et al (2019) Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants. Genomics 111:1493–1503. https://doi.org/10.1016/j.ygeno.2018.10.004

CAS  Article  PubMed  Google Scholar 

Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623. https://doi.org/10.1099/mic.0.2008/022772-0

CAS  Article  PubMed  Google Scholar 

Männistö MK, Puhakka JA (2002) Psychrotolerant and microaerophilic bacteria in boreal groundwater. FEMS Microbiol Ecol 41:9–16. https://doi.org/10.1111/J.1574-6941.2002.TB00961.X

Article  PubMed  Google Scholar 

Markowitz VM, Mavromatis K, Ivanova NN et al (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278. https://doi.org/10.1093/BIOINFORMATICS/BTP393

CAS  Article  PubMed  Google Scholar 

Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 141(14):1–14. https://doi.org/10.1186/1471-2105-14-60

Article  Google Scholar 

Methé BA, Nelson KE, Deming JW et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918. https://doi.org/10.1073/pnas.0504766102

留言 (0)

沒有登入
gif