A novel gene from the acidophilic bacterium Leptospirillum sp. CF-1 and its role in oxidative stress and chromate tolerance

Cárdenas J, Lazcano M, Ossandon F, Corbett M, Holmes D, Watkin E. Draft genome sequence of the iron-oxidizing acidophile Leptospirillum ferriphilum type strain DSM 14647. Genome Announc. 2014;2:e01153-e1214.

PubMed  PubMed Central  Article  Google Scholar 

Jones GC, Corin KC, Van Hille RP, Harrison STL. The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching. Miner Eng. 2011;24(11):1198–208.

CAS  Article  Google Scholar 

Ferrer A, Rivera J, Zapata C, Norambuena J, Sandoval A, Chávez R, Orellana O, Levicán G. Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1. Front Microbiol. 2016;7:748.

PubMed  PubMed Central  Article  Google Scholar 

Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. Osmotic imbalance, cytoplasm acidification and oxidative stress induction support the high toxicity of chloride in acidophilic bacteria. Front Microbiol. 2019;10:2455.

PubMed  PubMed Central  Article  Google Scholar 

Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, Sand W, Wilmes P, Poetsch A, Dopson M. Multi-omics reveals the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum. Appl Environ Microbiol. 2018;84:e02091-e2117.

PubMed  PubMed Central  Article  Google Scholar 

González D, Álamos P, Rivero M, Orellana O, Norambuena J, Chávez R, Levicán G. Deciphering the role of multiple thioredoxin fold proteins of Leptospirillum sp. in oxidative stress tolerance. Int J Mol Sci. 2020;21(5):1880.

PubMed Central  Article  CAS  Google Scholar 

Contreras M, Mascayano M, Chávez R, Ferrer A, Paillavil B, Levicán G. Dyp-type peroxidase (DypA) from the bioleaching acidophilic bacterium Leptospirillum ferriphilum DSM 14647. Adv Mater Res. 2015;1130:23–7.

Article  Google Scholar 

Zapata C, Paillavil B, Chávez R, Álamos P, Levicán G. Cytochrome c peroxidase (CcP) is a molecular determinant of the oxidative stress response in the extreme acidophilic Leptospirillum sp. CF-1. FEMS Microbiol Ecol. 2017;93:fix001.

Article  CAS  Google Scholar 

Ferrer A, Bunk B, Spröer C, Biedendieck R, Valdés N, Jahn M, Jahn D, Orellana O, Levicán G. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1. J Biotechnol. 2016;222:21–2.

CAS  PubMed  Article  Google Scholar 

Gao L, Pei G, Chen L, Zhang W. A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803. J Microbiol Methods. 2015;116:44–52.

CAS  PubMed  Article  Google Scholar 

Doerks T, Van Noort V, Minguez P, Bork P. Annotation of the M. tuberculosis hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. PLoS ONE. 2012;7: e34302.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Galperin MY, Koonin EV. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res. 2004;32:5452–63.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008;9:1–24.

Article  CAS  Google Scholar 

Camacho D, Frazao R, Fouillen A, Nanci A, Lang BF, Apte SC, Baron C, Warren LA. New insights into Acidithiobacillus thiooxidans sulfur metabolism through coupled gene expression, solution chemistry, microscopy, and spectroscopy analyses. Front Microbiol. 2020;11:411.

PubMed  PubMed Central  Article  Google Scholar 

Cárdenas J, Moya F, Covarrubias P, Shmaryahu A, Levicán G, Holmes D, Quatrini R. Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy. 2012;127–128:162–7.

Article  CAS  Google Scholar 

Moya-Beltrán A, Cárdenas P, Covarrubias PC, Issotta F, Ossandon FJ, Grail BM, Holmes DS, Quatrini R, Johnson DB. Draft genome sequence of the nominated type strain of “Ferrovum myxofaciens”, an acidophilic, iron-oxidizing Betaproteobacterium. Genome Announc. 2014;2:2013–4.

Article  Google Scholar 

Shidhi PR, Nair AS, Suravajhala P. Identifying pseudogenes from hypothetical proteins for making synthetic proteins. Syst Synth Biol. 2014;8(2):169–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bork P. Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res. 2000;10(4):398–400.

CAS  PubMed  Article  Google Scholar 

Koonin E, Galperin M. Sequence – Evolution – Function: computational approaches in comparative genomis. Boston: Kluwer Academic; 2003.

Book  Google Scholar 

Yelton AP, Thomas BC, Simmons SL, Wilmes P, Zemla A, Thelen MP, Justice N, Banfield JF. A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes. PLoS Comput Biol. 2011;7(10): e1002230.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Islam S, Shahik S, Sohel M, Patwary N, Hasan A. In silico structural and functional annotation of hypothetical proteins of Vibrio cholerae O139. Genomics Inform. 2015;13(2):53–9.

PubMed  PubMed Central  Article  Google Scholar 

School K, Markleivits J, Schram W, Harris L. Predictive characterization of hypothetical proteins in Staphylococcus aureus NCTC 8325. Bioinformation. 2016;12(3):209–20.

PubMed  PubMed Central  Article  Google Scholar 

Singh G, Singh V. Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from Helicobacter pylori strain HPAG1. J Biomol Struct Dyn. 2017;36(4):906–18.

PubMed  Article  CAS  Google Scholar 

Farías R, Norambuena J, Ferrer A, Camejo P, Zapata C, Chávez R, Orellana O, Levicán G. Redox stress response and UV tolerance in the acidophilic iron-oxidizing bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Res Microbiol. 2021;172(3): 103833.

PubMed  Article  CAS  Google Scholar 

Morino M, Suzuki T, Ito M, Krulwich TA. Purification and functional reconstitution of a seven-subunit Mrp-Type Na+/H+ antiporter. J Bacteriol. 2014;196(1):28–35.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Ito M, Morino M, Krulwich TA. Mrp antiporters have important roles in diverse bacteria and archaea. Front Microbiol. 2017;8:2325.

PubMed  PubMed Central  Article  Google Scholar 

Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA, Godzik A. Exploration of uncharted regions of the protein universe. PLoS Biol. 2009;7(9): e1000205.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci. 2018;28(1):30–40.

PubMed  PubMed Central  Google Scholar 

Kim S, Lee SB. Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus. J Biochem. 2006;139(3):591–6.

CAS  PubMed  Article  Google Scholar 

Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L. Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. App Environ Microbiol. 2002;68(5):2246–50.

CAS  Article  Google Scholar 

Shah SS, Damare S. Proteomic response of marine-derived Staphylococcus cohnii NIOSBK35 to varying Cr (VI) concentrations. Metallomics. 2019;11(9):1465–71.

CAS  PubMed  Article  Google Scholar 

Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal. 2010;13:1231–46.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C. Mechanisms of bacterial resistance to chromium compounds. Biometals. 2008;21:321–32.

PubMed  Article  CAS  Google Scholar 

Sturm G, Brunner S, Suvorova E, Dempwolff F, Reiner J, Graumann P, Bernier- Latmani R, Majzlan J, Gescher J. Chromate resistance mechanisms in Leucobacter chromiiresistens. Appl Environ Microbiol. 2018;84:e02208-e2218.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: Cr(VI) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol. 1992;174:5340–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kanmani P, Aravind J, Preston D. Remediation of chromium contaminants using bacteria. Int J Environ Sci Technol. 2012;9:183–93.

CAS  Article  Google Scholar 

Sobol Z, Schiestl RH. Intracellular and extracellular factors influencing Cr(VI and Cr(III) genotoxicity. Environ Mol Mutagen. 2012;53:94–100.

CAS  PubMed  Article  Google Scholar 

Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A. The chromate- inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J Bacteriol. 2008;190:6996–7003.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C. Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol. 2006;11:82–93.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif