Circadian clocks, cognition, and Alzheimer’s disease: synaptic mechanisms, signaling effectors, and chronotherapeutics

DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci. 2007;10(5):543–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998 06/05; 2021/10;280(5369):1564–9.

CAS  PubMed  Article  Google Scholar 

Griffin EA, David S, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 1999 10/22; 2021/10;286(5440):768–71.

CAS  PubMed  Article  Google Scholar 

Eide EJ, Woolf MF, Heeseog K, Peter W, William H, Fernando C, et al. Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Mol Cell Biol. 2005 04/01; 2021/10;25(7):2795–807.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lowrey PL, Kazuhiro S, Antoch MP, Shin Y, Zemenides PD, Ralph MR, et al. Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau. Science. 2000 04/21; 2021/10;288(5465):483–91.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Luca B, Florian B, Alessio M, Choogon L, Nolan PM, Godinho SIH, et al. SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins. Science. 2007 05/11; 2021/10;316(5826):900–4.

Article  CAS  Google Scholar 

Siepka SM, Yoo S, Park J, Song W, Kumar V, Hu Y, et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007 06/01;129(5):1011–23.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103(7):1009–17.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, et al. Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A. 1999 National Academy of Sciences;96(21):12114–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron. 2001;30(2):525–36.

CAS  PubMed  Article  Google Scholar 

Maywood ES, Chesham JE, Meng Q, Nolan PM, Loudon ASI, Hastings MH. Tuning the Period of the Mammalian Circadian Clock: Additive and Independent Effects of CK1εTau and Fbxl3Afh Mutations on Mouse Circadian Behavior and Molecular Pacemaking. J Neurosci. 2011 01/26;31(4):1539.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron. 2008;58(1):78–88.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci U S A. 2010;107(34):15240–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Akashi M, Takumi T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol. 2005;12(5):441–8.

CAS  PubMed  Article  Google Scholar 

Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251–60.

CAS  PubMed  Article  Google Scholar 

Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature. 2012;485(7396):123–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Everett LJ, Lazar MA. Nuclear receptor rev-erbα: up, down, and all around. Trends Endocrinol Metab. 2014;25(11):586–92.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69(6):1583–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ibuka N, Kawamura H. Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res. 1975;96(1):76–81.

CAS  PubMed  Article  Google Scholar 

Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42(1):201–6.

CAS  PubMed  Article  Google Scholar 

Moore RY, Klein DC. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 1974;71(1):17–33.

CAS  PubMed  Article  Google Scholar 

Eastman CI, Mistlberger RE, Rechtschaffen A. Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav. 1984;32(3):357–68.

CAS  PubMed  Article  Google Scholar 

Honma S, Honma K, Shirakawa T, Hiroshige T. Rhythms in behaviors, body temperature and plasma corticosterone in SCN lesioned rats given methamphetamine. Physiol Behav. 1988;44(2):247–55.

CAS  PubMed  Article  Google Scholar 

Liu X, Zhang B, Xu X, Huang Z, Qu W. Lesions of suprachiasmatic nucleus modify sleep structure but do not alter the total amount of daily sleep in rats. Sleep Biol Rhythms. 2012;10(4):293–301.

Article  Google Scholar 

Schwartz MD, Urbanski HF, Nunez AA, Smale L. Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus). Brain Res. 2011;1367:146–61.

CAS  PubMed  Article  Google Scholar 

Gizowski C, Zaelzer C, Bourque CW. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature. 2016;537(7622):685–8.

CAS  PubMed  Article  Google Scholar 

Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol. 2004;468(3):361–79.

PubMed  PubMed Central  Article  Google Scholar 

Todd WD, Machado NL. A time to fight: circadian control of aggression and associated autonomic support. Auton Neurosci. 2019;217:35–40.

PubMed  Article  Google Scholar 

Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987;258(2):204–29.

CAS  PubMed  Article  Google Scholar 

Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, et al. A hypothalamic circuit for the circadian control of aggression. Nat Neurosci. 2018;21(5):717–24.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005;28(3):152–7.

CAS  PubMed  Article  Google Scholar 

Ibata Y, Okamura H, Tanaka M, Tamada Y, Hayashi S, Iijima N, et al. Functional morphology of the suprachiasmatic nucleus. Front Neuroendocrinol. 1999;20(3):241–68.

CAS  PubMed  Article  Google Scholar 

McMartin L, Kiraly M, Heller HC, Madison DV, Ruby NF. Disruption of circadian timing increases synaptic inhibition and reduces cholinergic responsiveness in the dentate gyrus. Hippocampus. 2021;31(4):422–34.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Buijs FN, León-Mercado L, Guzmán-Ruiz M, Guerrero-Vargas NN, Romo-Nava F, Buijs RM. The circadian system: a regulatory feedback network of periphery and brain. Physiology (Bethesda). 2016;31(3):170–81.

Google Scholar 

Buijs RM, Escobar C, Swaab DF. The circadian system and the balance of the autonomic nervous system. Handb Clin Neurol. 2013;117:173–91.

PubMed  Article  Google Scholar 

Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids – interactions across many time scales. Mol Cell Endocrinol. 2013;380(1):2–15.

CAS  PubMed  Article  Google Scholar 

Warren WS, Champney TH, Cassone VM. The suprachiasmatic nucleus controls the circadian rhythm of heart rate via the sympathetic nervous system. Physiol Behav. 1994;55(6):1091–9.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif