Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.

Google Scholar 

Arnold, M., Ferlay, J., van HenegouwenB, M. I., & Soerjomataram, I. (2020). Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut., 69(9), 1564–71.

PubMed  Article  Google Scholar 

Lagergren, J., Smyth, E., Cunningham, D., & Lagergren, P. (2017). Oesophageal cancer. Lancet (London, England), 390(10110), 2383–2396.

Article  Google Scholar 

Prabhu, A., Obi, K. O., & Rubenstein, J. H. (2014). The synergistic effects of alcohol and tobacco consumption on the risk of esophageal squamous cell carcinoma: A meta-analysis. American Journal of Gastroenterology, 109(6), 822–827.

Article  Google Scholar 

Qu, X., Ben, Q., & Jiang, Y. (2013). Consumption of red and processed meat and risk for esophageal squamous cell carcinoma based on a meta-analysis. Annals of Epidemiology, 23(12), 762-770.e1.

PubMed  Article  Google Scholar 

Chen, Y., Tong, Y., Yang, C., Gan, Y., Sun, H., Bi, H., et al. (2015). Consumption of hot beverages and foods and the risk of esophageal cancer: A meta-analysis of observational studies. BMC Cancer, 2(15), 449.

Article  Google Scholar 

Wu, C., Wang, Z., Song, X., Feng, X.-S., Abnet, C. C., He, J., et al. (2014). Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nature Genetics, 46(9), 1001–1006.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ahn, J., Chen, C. Y., & Hayes, R. B. (2012). Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control CCC., 23(3), 399–404.

PubMed  PubMed Central  Article  Google Scholar 

Menya, D., Maina, S. K., Kibosia, C., Kigen, N., Oduor, M., Some, F., et al. (2019). Dental fluorosis and oral health in the African Esophageal Cancer Corridor: Findings from the Kenya ESCCAPE case–control study and a pan-African perspective. International Journal of Cancer, 145(1), 99–109.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ekheden, I., Yang, X., Chen, H., Chen, X., Yuan, Z., Jin, L., et al. (2020). Associations between gastric atrophy and its interaction with poor oral health and the risk for esophageal squamous cell carcinoma in a high-risk region of China: A population-based case-control study. American Journal of Epidemiology, 189(9), 931–941.

PubMed  PubMed Central  Article  Google Scholar 

Lagergren, J., & Lagergren, P. (2013). Recent developments in esophageal adenocarcinoma. CA: A Cancer Journal for Clinicians, 63(4), 232–248.

Google Scholar 

Bhat, A. A., Lu, H., Soutto, M., Capobianco, A., Rai, P., Zaika, A., et al. (2018). Exposure of Barrett’s and esophageal adenocarcinoma cells to bile acids activates EGFR-STAT3 signaling axis via induction of APE1. Oncogene, 37(46), 6011–6024.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kauer, W. K., Peters, J. H., DeMeester, T. R., Ireland, A. P., Bremner, C. G., & Hagen, J. A. (1995). Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Annals of Surgery, 222(4), 525–31. discussion 531-533.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Song, S., Guha, S., Liu, K., Buttar, N. S., & Bresalier, R. S. (2007). COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut, 56(11), 1512–1521.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Peng, D., Zaika, A., Que, J., & El-Rifai, W. (2021). The antioxidant response in Barrett’s tumorigenesis: A double-edged sword. Redox Biology, 41, 101894.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kubo, N., Morita, M., Nakashima, Y., Kitao, H., Egashira, A., Saeki, H., et al. (2014). Oxidative DNA damage in human esophageal cancer: Clinicopathological analysis of 8-hydroxydeoxyguanosine and its repair enzyme. Diseases of the Esophagus: Official Journal of the International Society for Diseases of the Esophagus, 27(3), 285–293.

CAS  Article  Google Scholar 

Radojicic, J., Zaravinos, A., & Spandidos, D. A. (2012). HPV, KRAS mutations, alcohol consumption and tobacco smoking effects on esophageal squamous-cell carcinoma carcinogenesis. International Journal of Biological Markers, 27(1), 1–12.

CAS  Article  Google Scholar 

Peters, B. A., Wu, J., Pei, Z., Yang, L., Purdue, M. P., Freedman, N. D., et al. (2017). Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Research, 77(23), 6777–6787.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, C., & Shi, G. (2019). Smoking and microbiome in oral, airway, gut and some systemic diseases. Journal of Translational Medicine, 17(1), 225.

PubMed  PubMed Central  Article  Google Scholar 

Macgregor, I. D. (1989). Effects of smoking on oral ecology. A review of the literature. Clinical Preventive Dentistry, 11(1), 3–7.

CAS  PubMed  Google Scholar 

Nociti, F. H., Jr., Casati, M. Z., & Duarte, P. M. (2015). Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontology 2000, 67(1), 187–210.

PubMed  Article  Google Scholar 

Wang, M., Li, Y., Xiao, Y., Yang, M., Chen, J., Jian, Y., et al. (2021). Nicotine-mediated OTUD3 downregulation inhibits VEGF-C mRNA decay to promote lymphatic metastasis of human esophageal cancer. Nature Communications, 12(1), 7006.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Quante, M., Bhagat, G., Abrams, J. A., Marache, F., Good, P., Lee, M. D., et al. (2012). Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell, 21(1), 36–51.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liying, Y., Xiaohua, L., Carlos, W.N., Fritz, F., Richard, M.P., Zhiheng, P. (2009). Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology [Internet]. [cited 2022 Jan 4];137(2). Available from: https://pubmed.ncbi.nlm.nih.gov/19394334/

Yang, L., Francois, F., & Pei, Z. (2012). Molecular Pathways: Pathogenesis and Clinical Implications of Microbiome Alteration in Esophagitis and Barrett Esophagus. Clinical Cancer Research, 18(8), 2138–2144.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Macfarlane, S., Furrie, E. ,Macfarlane, G. T.,Dillon, J. F. (2007). Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis Off Publ Infect Dis Soc Am [Internet]. [cited 2022 Jan 4];45(1). Available from: https://pubmed.ncbi.nlm.nih.gov/17554697/

Janmaat, M. L., Gallegos-Ruiz, M. I., Rodriguez, J. A., Meijer, G. A., Vervenne, W. L., Richel, D. J., et al. (2006). Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J Clin Oncol Off J Am Soc Clin Oncol., 24(10), 1612–1619.

CAS  Article  Google Scholar 

Khalafi, S., Lockhart, A. C., Livingstone, A. S., & El-Rifai, W. (2020). Targeted molecular therapies in the treatment of esophageal adenocarcinoma, are we there yet? Cancers, 12(11), E3077.

PubMed  Article  CAS  Google Scholar 

Dutton, S. J., Ferry, D. R., Blazeby, J. M., Abbas, H., Dahle-Smith, A., Mansoor, W., et al. (2014). Gefitinib for oesophageal cancer progressing after chemotherapy (COG): A phase 3, multicentre, double-blind, placebo-controlled randomised trial. The lancet Oncology, 15(8), 894–904.

CAS  PubMed  Article  Google Scholar 

Kato, K., Doi, T., Kojima, T., Hara, H., Takahashi, S., Muro, K., et al. (2017). Phase II study of BKM120 in patients with advanced esophageal squamous cell carcinoma (EPOC1303). Journal of Clinical Oncology, 35(15_suppl), 4069–4069.

Article  Google Scholar 

Bhatt, A. P., Redinbo, M. R., & Bultman, S. J. (2017). The role of the microbiome in cancer development and therapy. CA: A Cancer Journal for Clinicians, 67(4), 326–344.

Google Scholar 

Abdul Rahman, R., Lamarca, A., Hubner, R. A., Valle, J. W., & McNamara, M. G. (2021). The microbiome as a potential target for therapeutic manipulation in pancreatic cancer. Cancers, 13(15), 3779.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yi, M., Jiao, D., Qin, S., Chu, Q., Li, A., & Wu, K. (2019). Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integrative Cancer Therapies, 13(18), 1534735419876351.

Google Scholar 

Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ponomarev, A. V., & Shubina, I. Z. (2019). Insights into mechanisms of tumor and immune system interaction: Association with wound healing. Frontiers in Oncology, 9, 1115.

PubMed  PubMed Central  Article  Google Scholar 

Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? The Lancet (London England), 357(9255), 539–545.

CAS  Article  Google Scholar 

Blank, S., Deck, C., Dreikhausen, L., Weichert, W., Giese, N., Falk, C., et al. (2015). Angiogenic and growth factors in gastric cancer. Journal of Surgical Research, 194(2), 420–429.

CAS  Article  Google Scholar 

Wilson, J., & Balkwill, F. (2002). The role of cytokines in the epithelial cancer microenvironment. Seminars in Cancer Biology, 12(2), 113–120.

CAS  PubMed  Article  Google Scholar 

Bhat, A. A., Nisar, S., Maacha, S., Carneiro-Lobo, T. C., Akhtar, S., Siveen, K. S., et al. (2021). Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Molecular Cancer, 20(1), 2.

PubMed  PubMed Central  Article  Google Scholar 

Durand, R. E. (1991). Keynote address: The influence of microenvironmental factors on the activity of radiation and drugs. International Journal of Radiation Oncology Biology Physics, 20(2), 253–258.

CAS  Article  Google Scholar 

Lee, H.-J., Zhuang, G., Cao, Y., Du, P., Kim, H.-J., & Settleman, J. (2014). Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell, 26(2), 207–221.

CAS  PubMed  Article  Google Scholar 

Nisar, S., Hashem, S., Macha, M. A., Yadav, S. K., Muralitharan, S., Therachiyil, L., et al. (2020). Exploring Dysregulated Signaling Pathways in Cancer. Current Pharmaceutical Design, 26(4), 429–445.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif