Life of double minutes: generation, maintenance, and elimination

Alitalo K, Schwab M, Lin CC et al (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A 80:1707–1711. https://doi.org/10.1073/pnas.80.6.1707

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baiker A, Maercker C, Piechaczek C et al (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2:182–184. https://doi.org/10.1038/35004061

CAS  Article  PubMed  Google Scholar 

Barker P, Drwinga H, Hittelman W, Maddox A (1980) Double minutes replicate once during S phase of the cell cycle. Exp Cell Res 130:353–360. https://doi.org/10.1016/0014-4827(80)90012-9

CAS  Article  PubMed  Google Scholar 

Borrie MS, Campor JS, Joshi H, Gartenberg MR (2017) Binding, sliding, and function of cohesin during transcriptional activation. Proc Natl Acad Sci U S A 114:E1062–E1071. https://doi.org/10.1073/pnas.1617309114

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cai M, Zhang H, Hou L et al (2019) Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer 144:1037–1048. https://doi.org/10.1002/ijc.31781

CAS  Article  PubMed  Google Scholar 

Canute GW, Longo JA, Winfield JA et al (1996) Hydroxyurea accelerates the loss of epidermal growth factor? Receptor genes amplified as double-minute chromosomes in human glioblastoma multiforme. Neurosurgery 39:976–983. https://doi.org/10.1097/00006123-199611000-00019

CAS  Article  PubMed  Google Scholar 

Carroll SM, Gaudray P, De Rose ML et al (1987) Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Mol Cell Biol 7:1740–1750. https://doi.org/10.1128/mcb.7.5.1740

CAS  Article  PubMed  PubMed Central  Google Scholar 

Carroll SM, DeRose ML, Gaudray P et al (1988) Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol 8:1525–1533. https://doi.org/10.1128/mcb.8.4.1525-1533.1988

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506. https://doi.org/10.1038/nrm.2017.48

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chapman JR, Taylor MRG, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510. https://doi.org/10.1016/j.molcel.2012.07.029

CAS  Article  PubMed  Google Scholar 

Coquelle A, Pipiras E, Toledo F et al (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89:215–225. https://doi.org/10.1016/S0092-8674(00)80201-9

CAS  Article  PubMed  Google Scholar 

Coquelle A, Toledo F, Stern S et al (1998) A new role for hypoxia in tumor progression: Induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2:259–265. https://doi.org/10.1016/S1097-2765(00)80137-9

CAS  Article  PubMed  Google Scholar 

Coquelle A, Rozier L, Dutrillaux B, Debatisse M (2002) Induction of multiple double-strand breaks within an hsr bymeganuclease I-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 21:7671–7679. https://doi.org/10.1038/sj.onc.1205880

CAS  Article  PubMed  Google Scholar 

Costantino L, Sotiriou SK, Rantala JK et al (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science (80- ) 343:88–91. https://doi.org/10.1126/science.1243211

Coursey TL, Mcbride AA (2019) Annual review of virology hitchhiking of viral genomes on cellular chromosome. https://doi.org/10.1146/annurev-virology-092818

Cowell JK, Miller OJ (1983) Occurrence and evolution of homogeneously staining regions may be due to breakage-fusion-bridge cycles following telomere loss. Chromosoma 88:216–221. https://doi.org/10.1007/BF00285623

CAS  Article  PubMed  Google Scholar 

Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58. https://doi.org/10.1038/nature10802

CAS  Article  PubMed  PubMed Central  Google Scholar 

deCarvalho AC, Kim H, Poisson LM et al (2018) Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet 50:708–717. https://doi.org/10.1038/s41588-018-0105-0

CAS  Article  PubMed  PubMed Central  Google Scholar 

Deng X, Zhang L, Zhang Y et al (2006) Double minute chromosomes in mouse methotrexate-resistant cells studied by atomic force microscopy. Biochem Biophys Res Commun 346:1228–1233. https://doi.org/10.1016/j.bbrc.2006.06.041

CAS  Article  PubMed  Google Scholar 

Deshpande V, Luebeck J, Nguyen NPD et al (2019) Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun. https://doi.org/10.1038/s41467-018-08200-y

Eckhardt SG, Dai A, Davidson KK et al (1994) Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-myc. Proc Natl Acad Sci U S A 91:6674–6678. https://doi.org/10.1073/pnas.91.14.6674

CAS  Article  PubMed  PubMed Central  Google Scholar 

Farcas AM, Uluocak P, Helmhart W, Nasmyth K (2011) Cohesin’s concatenation of sister DNAs maintains their intertwining. Mol Cell 44:97–107. https://doi.org/10.1016/j.molcel.2011.07.034

CAS  Article  PubMed  PubMed Central  Google Scholar 

Foureman P, Winfield JA, Hahn PJ (1998) Chromosome breakpoints near CpG islands in double minutes. Gene 218:121–128. https://doi.org/10.1016/S0378-1119(98)00398-9

CAS  Article  PubMed  Google Scholar 

Garsed DW, Marshall OJ, Corbin VDA et al (2014) The Architecture and Evolution of Cancer Neochromosomes. Cancer Cell 26:653–667. https://doi.org/10.1016/j.ccell.2014.09.010

CAS  Article  PubMed  Google Scholar 

George DL, Powers VE (1982) Amplified DNA sequences in Y1 mouse adrenal tumor cells: association with double minutes and localization to a homogeneously staining chromosomal region. Proc Natl Acad Sci U S A 79:1597–1601. https://doi.org/10.1073/pnas.79.5.1597

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gibaud A, Vogt N, Hadj-Hamou N-S et al (2010) Extrachromosomal amplification mechanisms in a glioma with amplified sequences from multiple chromosome loci. https://doi.org/10.1093/hmg/ddq004

Green BM, Finn KJ, Li JJ (2010) Loss of DNA replication control is a potent inducer of gene amplification. Science (80- ) 329:943–946. https://doi.org/10.1126/science.1190966

Haarhuis JHI, Elbatsh AMO, Rowland BD (2014) Cohesin and Its Regulation: On the Logic of X-ShapedChromosomes. Dev Cell 31:7–18. https://doi.org/10.1016/j.devcel.2014.09.010

CAS  Article  PubMed  Google Scholar 

Haber DA, Schimke RT (1981) Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell 26:355–362. https://doi.org/10.1016/0092-8674(81)90204-X

CAS  Article  PubMed  Google Scholar 

Hahn P, Morgan WF, Painter RB (1987) The role of acentric chromosome fragments in gene amplification. Somat Cell Mol Genet 13:597–608. https://doi.org/10.1007/BF01534480

CAS  Article  PubMed  Google Scholar 

Hamkalo BA, Farnham PJ, Johnston R, Schimke RT (1985) Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. Proc Natl Acad Sci U S A 82:1126–1130. https://doi.org/10.1073/pnas.82.4.1126

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hill AB, Schimke RT (1985) Increased gene amplification in L5178Y mouse lymphoma cells with hydroxyurea-induced chromosomal aberrations. Cancer Res 45(10):5050–5057

Hintzen DC, Soto M, Schubert M et al (2021) Monosomies, trisomies and segmental aneuploidies differentially affect chromosomal stability. bioRxiv 2021. https://doi.org/10.1101/2021.08.31.458318

Hintzsche H, Hemmann U, Poth A, Utesch D (2017) Fate of micronuclei and micronucleated cells. https://doi.org/10.1016/j.mrrev.017.02.002

Hung KL, Yost KE, Xie L et al (2021) ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600:731–736. https://doi.org/10.1038/s41586-021-04116-8

CAS  Article  PubMed  Google Scholar 

Hung K, Luebeck J, Dehkordi S et al (2021a) Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. bioRxiv 2021. https://doi.org/10.1101/2021.11.28.470285

Itoh N, Shimizu N (1998) DNA replication-dependent intranuclear relocation of double minute chromatin. J Cell Sci 111:3275–3285. https://doi.org/10.1242/jcs.111.22.3275

CAS  Article  PubMed  Google Scholar 

Jack EM, Waters JJ, Harrison CJ (1987) A scanning electron microscopy study of double minutes from a human tumour cell line. Cytogenet Genome Res 44:49–52. https://doi.org/10.1159/000132340

CAS  Article  Google Scholar 

Janssen A, Van Der Burg M, Szuhai K et al (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science (80- ) 333:1895–1898. https://doi.org/10.1126/science.1210214

Kanda T, Sullivan KF, Wahl GM (1998) Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385. https://doi.org/10.1016/S0960-9822(98)70156-3

CAS  Article  PubMed  Google Scholar 

Kanda T, Otter M, Wahl GM (2001) Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. J Cell Sci 114:49–58. https://doi.org/10.1242/jcs.114.1.49

CAS  Article  PubMed  Google Scholar 

Kaufman RJ, Sharp PA, Latt SA (1983) Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol 3:699–711. https://doi.org/10.1128/mcb.3.4.699-711.1983

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kim H, Nguyen NP, Turner K et al (2020) Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet 52:891–897. https://doi.org/10.1038/s41588-020-0678-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Koche RP, Rodriguez-Fos E, Helmsauer K et al (2020) Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat Genet 52:29–34. https://doi.org/10.1038/s41588-019-0547-z

CAS  Article  PubMed 

留言 (0)

沒有登入
gif