nNav1.5 expression is associated with glutamate level in breast cancer cells

Angus M, Ruben P. Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels. 2019. https://doi.org/10.1080/19336950.2019.1666455.

Article  PubMed  PubMed Central  Google Scholar 

Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020. https://doi.org/10.3389/fncel.2020.00051.

Article  PubMed  PubMed Central  Google Scholar 

Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, Yin WF, Satharasinghe DA, Liew WC, Tan SW, Ong HK, Cheong SK. MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line. Int J Biol Sci. 2016;12(4):427–45. https://doi.org/10.7150/ijbs.12777.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brackenbury WJ, Chioni A-M, Diss JKJ, Djamgoz MBA. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 2007;101(2):149–60. https://doi.org/10.1007/s10549-006-9281-1.

Article  PubMed  Google Scholar 

Brisson L, Gillet L, Calaghan S, Besson P, Guennec JY, Roger S, Gore J. Na v 1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H efflux in caveolae. Oncogene. 2011. https://doi.org/10.1038/onc.2010.574.

Article  PubMed  Google Scholar 

Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, Fiehn O, Denkert C. Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. 2015. https://doi.org/10.1002/ijc.29152.

Article  PubMed  Google Scholar 

Chioni A-M, Fraser SP, Pani F, Foran P, Wilkin GP, Diss JKJ, Djamgoz MBA. A novel polyclonal antibody specific for the Nav1.5 voltage-gated Na+ channel ‘neonatal’ splice form. J Neurosci Methods. 2005;147(2):88–98. https://doi.org/10.1016/j.jneumeth.2005.03.010.

CAS  Article  PubMed  Google Scholar 

Chioni AM, Shao D, Grose R, Djamgoz MBA. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: Activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol. 2010. https://doi.org/10.1016/j.biocel.2009.11.021.

Article  PubMed  Google Scholar 

Diaz D, Delgadillo DM, Hernández-Gallegos E, Ramírez-Domínguez ME, Hinojosa LM, Ortiz CS, Berumen J, Camacho J, Gomora JC. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol. 2007. https://doi.org/10.1002/jcp.20871.

Article  PubMed  Google Scholar 

Djamgoz MBA, Fraser SP, Brackenbury WJ. In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers. 2019. https://doi.org/10.3390/cancers11111675.

Article  PubMed  PubMed Central  Google Scholar 

Dutta S, Lopez Charcas O, Tanner S, Gradek F, Driffort V, Roger S, Selander K, Velu SE, Brouillette W. Discovery and evaluation of nNav15 sodium channel blockers with potent cell invasion inhibitory activity in breast cancer cells. Bioorganic Med Chem. 2018. https://doi.org/10.1016/j.bmc.2018.04.003.

Article  Google Scholar 

Fazzari J, Lin H, Murphy C, Ungard R, Singh G. Inhibitors of glutamate release from breast cancer cells. New targets for cancer-induced bone-pain: Scientific Reports; 2015. https://doi.org/10.1038/srep08380.

Book  Google Scholar 

Fazzari J, Linher-Melville K, Singh G. Tumour-derived glutamate: linking aberrant cancer cell metabolism to peripheral sensory pain pathways. Curr Neuropharmacol. 2016. https://doi.org/10.2174/1570159x14666160509123042.

Article  Google Scholar 

Fraser SP, Diss JKJ, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyutürk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Djamgoz MBA. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 2005. https://doi.org/10.1158/1078-0432.CCR-05-0327.

Article  PubMed  Google Scholar 

Gao R, Shen Y, Cai J, Lei M, Wang Z. Expression of voltage-gated sodium channel subunit in human ovarian cancer. Oncol Rep. 2010. https://doi.org/10.3892/or-00000763.

Article  PubMed  Google Scholar 

Gillet L, Roger S, Besson P, Lecaille F, Gore J, Bougnoux P, Lalmanach G, Le Guennec JY. Voltage-gated sodium channel activity promotes cysteine cathepsin-dependent invasiveness and colony growth of human cancer cells. J Biol Chem. 2009. https://doi.org/10.1074/jbc.M806891200.

Article  PubMed  PubMed Central  Google Scholar 

Greco MR, Antelmi E, Busco G, Guerra L, Rubino R, Casavola V, Reshkin SJ, Cardone RA. Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol Rep. 2014. https://doi.org/10.3892/or.2013.2923.

Article  PubMed  Google Scholar 

Grimes JA, Fraser SP, Stephens GJ, Downing JEG, Laniado ME, Foster CS, Abel PD, Djamgoz MBA. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett. 1995. https://doi.org/10.1016/0014-5793(95)00772-2.

Article  PubMed  Google Scholar 

Herner A, Sauliunaite D, Michalski CW, Erkan M, Oliveira TD, Abiatari I, Kong B, Esposito I, Friess H, Kleeff J. Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 2011. https://doi.org/10.1002/ijc.25898.

Article  PubMed  Google Scholar 

House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, Sarvazyan N, Irby R, Strausberg RL, Hales TG, Stuart JM, Lee NH. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Can Res. 2010. https://doi.org/10.1158/0008-5472.CAN-10-1169.

Article  Google Scholar 

Koochekpour S, Majumdar S, Azabdaftari G, Attwood K, Scioneaux R, Subramani D, Manhardt C, Lorusso GD, Willard SS, Thompson H, Shourideh M, Rezaei K, Sartor O, Mohler JL, Vessella RL. Serum glutamate levels correlate with gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells. Clin Cancer Res. 2012. https://doi.org/10.1158/1078-0432.CCR-12-1308.

Article  PubMed  PubMed Central  Google Scholar 

Li CT, Yang KC, Lin WC. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2018.00767.

Article  PubMed  PubMed Central  Google Scholar 

Lysko PG, Webb CL, Yue TL, Gu JL, Feuerstein G. Neuroprotective effects of tetrodotoxin as a na+ channel modulator and glutamate release inhibitor in cultured rat cerebellar neurons and in gerbil global brain ischemia. Stroke. 1994. https://doi.org/10.1161/01.STR.25.12.2476.

Article  PubMed  Google Scholar 

Murtadha AH, et al. Influence of nNav15 on MHC class I expression in breast cancer. J Biosci. 2021;46:3.

Article  Google Scholar 

Noch E, Khalili K. Molecular mechanisms of necrosis in glioblastoma: The role of glutamate excitotoxicity. Cancer Biol Ther. 2009. https://doi.org/10.4161/cbt.8.19.9762.

Article  PubMed  Google Scholar 

Nouh MA, Mohamed MM, El-Shinawi M, Shaalan MA, Cavallo-Medved D, Khaled HM, Sloane BF. Cathepsin b: A potential prognostic marker for inflammatory breast cancer. J Transl Med. 2011. https://doi.org/10.1186/1479-5876-9-1.

Article  PubMed  PubMed Central  Google Scholar 

Odetallah MM. Cytogenetic analysis of primary breast tumors and MCF10A cells to determine early steps of breast carcinoma. Cells. 2003;23:89.

Google Scholar 

Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol. 2009;625(1–3):206–19.

CAS  Article  Google Scholar 

Pancrazio JJ, Viglione MP, Tabbara IA, Kim YI. Voltage-dependent Ion channels in small-cell lung cancer cells. Cancer Res. 1989;23:89.

Google Scholar 

Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002. https://doi.org/10.1093/nar/30.9.e36.

Article  PubMed  PubMed Central  Google Scholar 

Qu Y, et al. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLoS ONE. 2015;10(7):e0131285.

Article  Google Scholar 

Rasband WS. ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. 2014. http://Imagej.Nih.Gov/Ij/.

Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA. 1993. https://doi.org/10.1073/pnas.90.14.6591.

Article  PubMed  PubMed Central  Google Scholar 

Seidlitz EP, Sharma MK, Saikali Z, Ghert M, Singh G. Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metas. 2009. https://doi.org/10.1007/s10585-009-9277-4.

Article  Google Scholar 

Sharma MK, Seidlitz EP, Singh G. Cancer cells release glutamate via the cystine/glutamate antiporter. Biochem Biophys Res Commun. 2010. https://doi.org/10.1016/j.bbrc.2009.10.168.

Article  PubMed  PubMed Central  Google Scholar 

Sharudin NA, et al. 65P The new mouse anti-nNav1.5 monoclonal antibody. Ann Oncol. 2020;31:S1266–7.

Article  Google Scholar 

Sontheimer H. A role for glutamate in growth and invasion of primary brain tumors. J Neurochem. 2008. https://doi.org/10.1111/j.1471-4159.2008.05301.x.

Article  PubMed  PubMed Central  Google Scholar 

Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Chinnaiyan AM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009. https://doi.org/10.1038/nature07762.

Article  PubMed  PubMed Central  Google Scholar 

Taylora BS, Pale M, Yu J, Laxman B, Kalyana-Sundaram S, Zhao R, Menon A, Wei JT, Nesvizhskii AI, Ghosh D, Omenn GS, Lubman DM, Chinnaiyan AM, Sreekumar A. Humoral response profiling reveals pathways to prostate cancer progression. Mol Cell Proteomics. 2008. https://doi.org/10.1074/mcp.M700263-MCP200.

Article  Google Scholar 

Vanhove K, Giesen P, Owokotomo OE, Mesotten L, Louis E, Shkedy Z, Thomeer M, Adriaensens P. The plasma glutamate concentration as a complementary tool to differentiate benign PET-positive lung lesions from lung cancer. BMC Cancer. 2018. https://doi.org/10.1186/s12885-018-4755-1.

Article  PubMed  PubMed Central  Google Scholar 

Wenger SL, et al. Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Biosci Rep. 2004;24(6):631–9.

CAS  Article  Google Scholar 

Wright LE, Ottewell PD, Rucci N, Peyruchaud O, Pagnotti GM, Chiechi A, Buijs JT, Sterling JA. Murine models of breast cancer bone metastasis. BoneKEy Reports. 2016. https://doi.org/10.1038/bonekey.2016.31.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif