Bone stress injuries

Breithaupt, J. Zur Pathologie des menschlichen Fußes. Med. Ztg. 24, 169–177 (1855).

Google Scholar 

Stechow, S. Fußödem und Röntgenstrahlen. Dtsch. mil. ärztl. Z. 26, 465 (1897).

Google Scholar 

Burr, D. B. et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12, 6–15 (1997).

CAS  PubMed  Google Scholar 

Lee, D. Stress fractures, active component, U.S. Armed Forces, 2004–2010. MSMR 18, 8–11 (2011).

PubMed  Google Scholar 

Waterman, B. R., Gun, B., Bader, J. O., Orr, J. D. & Belmont, P. J. Jr Epidemiology of lower extremity stress fractures in the United States military. Mil. Med. 181, 1308–1313 (2016).

PubMed  Google Scholar 

Bulathsinhala, L. et al. Risk of stress fracture varies by race/ethnic origin in a cohort study of 1.3 million US Army soldiers. J. Bone Miner. Res. 32, 1546–1553 (2017).

CAS  PubMed  Google Scholar 

Kardouni, J. R., McKinnon, C. J., Taylor, K. M. & Hughes, J. M. Timing of stress fracture in soldiers during the first 6 career months: a retrospective cohort study. J. Athl. Train. 56, 1278–1284 (2021).

Google Scholar 

Wentz, L., Liu, P. Y., Haymes, E. & Ilich, J. Z. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil. Med. 176, 420–430 (2011).

PubMed  Google Scholar 

Shaffer, R. A., Rauh, M. J., Brodine, S. K., Trone, D. W. & Macera, C. A. Predictors of stress fracture susceptibility in young female recruits. Am. J. Sports Med. 34, 108–115 (2006).

PubMed  Google Scholar 

Tenforde, A. S., Sayres, L. C., McCurdy, M. L., Sainani, K. L. & Fredericson, M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med. Sci. Sports Exerc. 45, 1843–1851 (2013).

CAS  PubMed  Google Scholar 

Changstrom, B. G., Brou, L., Khodaee, M., Braund, C. & Comstock, R. D. Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013. Am. J. Sports Med. 43, 26–33 (2015).

PubMed  Google Scholar 

Rizzone, K. H., Ackerman, K. E., Roos, K. G., Dompier, T. P. & Kerr, Z. Y. The epidemiology of stress fractures in collegiate student-athletes, 2004-2005 through 2013-2014 academic years. J. Athl. Train. 52, 966–975 (2017).

PubMed  PubMed Central  Google Scholar 

Patel, N. M. et al. Is the incidence of paediatric stress fractures on the rise? Trends in New York State from 2000 to 2015. J. Pediatr. Orthop. B 29, 499–504 (2020).

PubMed  Google Scholar 

Kliethermes, S. A. et al. Defining a research agenda for youth sport specialisation in the USA: the AMSSM youth early sport specialization summit. Br. J. Sports Med. 55, 135–143 (2021).

PubMed  Google Scholar 

Warden, S. J., Edwards, W. B. & Willy, R. W. Preventing bone stress injuries in runners with optimal workload. Curr. Osteoporos. Rep. 19, 298–307 (2021).

PubMed  Google Scholar 

Kountouris, A. et al. MRI bone marrow oedema precedes lumbar bone stress injury diagnosis in junior elite cricket fast bowlers. Br. J. Sports Med. 53, 1236–1239 (2019).

PubMed  Google Scholar 

Warden, S. J., Gutschlag, F. R., Wajswelner, H. & Crossley, K. M. Aetiology of rib stress fractures in rowers. Sports Med. 32, 819–836 (2002).

PubMed  Google Scholar 

Branch, T., Partin, C., Chamberland, P., Emeterio, E. & Sabetelle, M. Spontaneous fractures of the humerus during pitching. A series of 12 cases. Am. J. Sports Med. 20, 468–470 (1992).

CAS  PubMed  Google Scholar 

Warden, S. J. et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc. Natl Acad. Sci. USA 111, 5337–5342 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Caine, D., Meyers, R., Nguyen, J., Schöffl, V. & Maffulli, N. Primary periphyseal stress injuries in young athletes: a systematic review. Sports Med. 52, 741–772 (2021).

PubMed  Google Scholar 

Tenforde, A. S. et al. Prevalence and anatomical distribution of bone stress injuries in the elite para athlete. Am. J. Phys. Med. Rehabil. 98, 1036–1040 (2019).

PubMed  Google Scholar 

Weigl, K. & Amrami, B. Occupational stress fracture in an unusual location: report of a case in the distal end of the shaft of the radius. Clin. Orthop. Relat. Res. 147, 222–224 (1980).

Google Scholar 

Dellestable, F. & Gaucher, A. Clay-shoveler’s fracture. Stress fracture of the lower cervical and upper thoracic spinous processes. Rev. Rhum. Engl. Ed. 65, 575–582 (1998).

CAS  PubMed  Google Scholar 

Peebles, C. R., Sulkin, T. & Sampson, M. A. ‘Cable-maker’s clavicle’: stress fracture of the medial clavicle. Skelet. Radiol. 29, 421–423 (2000).

CAS  Google Scholar 

Howard, R. S. & Conrad, G. R. Ice cream scooper’s hand. Report of an occupationally related stress fracture of the hand. Clin. Nucl. Med. 17, 721–723 (1992).

PubMed  Google Scholar 

Wu, Y. F., Lu, K., Girgis, C., Preda, M. & Preda, V. Postpartum bilateral sacral stress fracture without osteoporosis—a case report and literature review. Osteoporos. Int. 32, 623–631 (2021).

CAS  PubMed  Google Scholar 

Scott, R. D., Turoff, N. & Ewald, F. C. Stress fracture of the patella following duopatellar total knee arthroplasty with patellar resurfacing. Clin. Orthop. Relat. Res. 170, 147–151 (1982).

Google Scholar 

Venkatanarasimha, N., Kamath, S., Kambouroglou, G. & Ostlere, S. Proximal ulna stress fracture and stress reaction of the proximal radius associated with the use of crutches: a case report and literature review. J. Orthop. Traumatol. 10, 155–157 (2009).

PubMed  PubMed Central  Google Scholar 

Oren, V., Kozenitzky, I., Babiacki, A. & Stern, A. Unusual cough related stress injuries. Eur. J. Nucl. Med. 14, 108–111 (1988).

CAS  PubMed  Google Scholar 

Hollander, K. et al. Sex-specific differences in running injuries: a systematic review with meta-analysis and meta-regression. Sports Med. 51, 1011–1039 (2021).

PubMed  PubMed Central  Google Scholar 

Wright, A. A., Taylor, J. B., Ford, K. R., Siska, L. & Smoliga, J. M. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br. J. Sports Med. 49, 1517–1523 (2015).

PubMed  Google Scholar 

Rauh, M. J., Barrack, M. & Nichols, J. F. Associations between the female athlete triad and injury among high school runners. Int. J. Sports Phys. Ther. 9, 948–958 (2014).

PubMed  PubMed Central  Google Scholar 

Tenforde, A. S. et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am. J. Sports Med. 45, 302–310 (2017).

PubMed  Google Scholar 

Kraus, E. et al. Bone stress injuries in male distance runners: higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br. J. Sports Med. 53, 237–242 (2019).

PubMed  Google Scholar 

Nieves, J. W. et al. Males have larger skeletal size and bone mass than females, despite comparable body size. J. Bone Miner. Res. 20, 529–535 (2005).

PubMed  Google Scholar 

Tommasini, S. M., Nasser, P. & Jepsen, K. J. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone 40, 498–505 (2007).

PubMed  Google Scholar 

Hill, P. F., Chatterji, S., Chambers, D. & Keeling, J. D. Stress fracture of the pubic ramus in female recruits. J. Bone Jt. Surg. Br. 78, 383–386 (1996).

CAS  Google Scholar 

Kelly, E. W., Jonson, S. R., Cohen, M. E. & Shaffer, R. Stress fractures of the pelvis in female Navy recruits: an analysis of possible mechanisms of injury. Mil. Med. 165, 142–146 (2000).

CAS  PubMed  Google Scholar 

Wang, H., Kia, M. & Dickin, D. C. Influences of load carriage and physical activity history on tibia bone strain. J. Sport. Health Sci. 8, 478–485 (2019).

PubMed  Google Scholar 

Xu, C., Silder, A., Zhang, J., Reifman, J. & Unnikrishnan, G. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women. BMC Musculoskelet. Disord. 18, 1–12 (2017).

CAS  Google Scholar 

Knapik, J. et al. Stress fracture risk factors in basic combat training. Int. J. Sports Med. 33, 940–946 (2012).

CAS  PubMed  Google Scholar 

Popp, K. L. et al. Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women. Bone 103, 200–208 (2017).

PubMed  Google Scholar 

Warden, S. J. et al. Racial differences in cortical bone and their relationship to biochemical variables in Black and White children in the early stages of puberty. Osteoporos. Int. 24, 1869–1879 (2013).

CAS  PubMed  Google Scholar 

Seref-Ferlengez, Z., Kennedy, O. D. & Schaffler, M. B. Bone microdamage, remodeling and bone fragility: how much damage is too much damage? Bonekey Rep. 4, 644–644 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Giraud-Guille, M.-M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42, 167–180 (1988).

CAS  PubMed  Google Scholar 

Skedros, J. G., Mason, M. W., Nelson, M. C. & Bloebaum, R. D. Evidence of structural and material adaptation to specific strain features in cortical bone. Anat. Rec. 246, 47–63 (1996).

CAS  PubMed  Google Scholar 

Wolff, J. Das Gesetz der Transformation der Knochen (Hirschwald, 1892).

Burr, D. B. Bone quality: understanding what matters. J. Musculoskelet. Neuronal Interact. 4, 184–186 (2004).

CAS  PubMed  Google Scholar 

Pattin, C. A., Caler, W. E. & Carter, D. R. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech. 29, 69–79 (1996).

CAS  PubMed  Google Scholar 

Akkus, O., Knott, D. F., Jepsen, K. J., Davy, D. T. & Rimnac, C. M. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important. J. Biomed. Mater. Res. A 65, 482–488 (2003).

PubMed  Google Scholar 

Burr, D. B. et al. Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31, 337–345 (1998).

CAS  PubMed  Google Scholar 

Lee, T. C. et al. Detecting microdamage in bone. J. Anat. 203, 161–172 (2003).

CAS  PubMed 

留言 (0)

沒有登入
gif