Complex Material Properties of Gel-Amin: A Transparent and Ionically Conductive Hydrogel for Neural Tissue Engineering

Neuman K.E. · Kenny A. · Shi L. · Koppes A.N. · Koppes R.A.

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent/Cloud Rent for 48h to view Buy Cloud Access for unlimited viewing via different devices Synchronizing in the ReadCube Cloud Printing and saving restrictions apply Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

The field of tissue engineering has benefited greatly from the broad development of natural and synthetic polymers. Extensive work in neural engineering has demonstrated the value of conductive materials to improve spontaneous neuron activity as well as lowering the necessary field parameters for exogenous electrical stimulation. Further, cell fate is directly coupled to the mechanical properties of the cell culture substrate. Increasing the conductivity of hydrogel materials often necessitates the addition of dopant materials, organic and inorganic that facilitate electron mobility. However, very little electron transfer is observed in native cell signaling and most of these materials are opaque, severely limiting microscopy applications commonly employed to assess cell culture morphology and function. To overcome these shortcomings, the inclusion of an ionic liquid, Choline Acrylate, into the backbone of a modified collagen polymer increases the bulk conductivity 5-fold at a 1:1 ratio while maintaining optical transmission of visible light. Here, we explore how the inclusion of choline acrylate influences bulk material properties including the mechanical, swelling, and optical properties of our hydrogels, referred to as Gel-Amin hydrogels, as a material for tissue culture. The inclusion of an ionic liquid increases conductivity while maintaining a high degree of optical transmission. Despite an increase in swelling over traditional GelMA materials, the conductive hydrogels support whole dorsal root ganglia encapsulation and outgrowth. Our results indicate that our Gel-Amin system holds potential for neural engineering applications and lowering the required charge injection for the application of exogenous electrical stimulation. This is this first time an ionic liquid-hydrogel system has been used to culture and support primary neurons in vitro.

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif