Recent advances for cancer detection and treatment by microfluidic technology, review and update

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

PubMed  Article  Google Scholar 

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

PubMed  Article  Google Scholar 

Sun Y, Haglund TA, Rogers AJ, Ghanim AF, Sethu P. Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta. 2018;1012:10–29.

CAS  PubMed  Article  Google Scholar 

Bhagat AA, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Med Biol Eng Comput. 2010;48(10):999–1014.

PubMed  Article  Google Scholar 

Radisic M, Iyer RK, Murthy SK. Micro- and nanotechnology in cell separation. Int J Nanomedicine. 2006;1(1):3–14.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Saadi W, Wang SJ, Lin F, Jeon NL. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices. 2006;8(2):109–18.

PubMed  Article  Google Scholar 

Hou HW, Li QS, Lee GY, Kumar AP, Ong CN, Lim CT. Deformability study of breast cancer cells using microfluidics. Biomed Microdevices. 2009;11(3):557–64.

CAS  PubMed  Article  Google Scholar 

Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, et al. Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip. 2007;7(11):1461–8.

CAS  PubMed  Article  Google Scholar 

van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

PubMed  Article  Google Scholar 

Chen J, Chen D, Xie Y, Yuan T, Chen X. Progress of microfluidics for biology and medicine. Nanomicro Lett. 2013;5(1):66–80.

CAS  Google Scholar 

Ma Y-HV, Middleton K, You L, Sun Y. A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst Nanoeng. 2018;4(1):1–13.

Article  CAS  Google Scholar 

Karakas HE, Kim J, Park J, Oh JM, Choi Y, Gozuacik D, et al. A microfluidic chip for screening individual cancer cells via eavesdropping on autophagy-inducing crosstalk in the stroma niche. Sci Rep. 2017;7(1):2050.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip. 2012;12(10):1753–67.

CAS  PubMed  Article  Google Scholar 

Huang F, Wang B-R, Wang Y-G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol. 2018;24(41):4643.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Panesar S, Neethirajan S. Microfluidics: Rapid Diagnosis for Breast Cancer. Nanomicro Lett. 2016;8(3):204–20.

CAS  PubMed  Google Scholar 

Ruzycka M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Microfluidics for studying metastatic patterns of lung cancer. J Nanobiotechnol. 2019;17(1):71.

Article  Google Scholar 

Shoji S, Esashi M. Microflow devices and systems. J Micromech Microeng. 1994;4(4):157.

CAS  Article  Google Scholar 

Laser DJ, Santiago JG. A review of micropumps. J Micromech Microeng. 2004;14(6):R35.

Article  Google Scholar 

Woias P. Micropumps—past, progress and future prospects. Sens Actuators B Chem. 2005;105(1):28–38.

CAS  Article  Google Scholar 

Gravesen P, Branebjerg J, Jensen OS. Microfluidics-a review J Micromech Microeng. 1993;3(4):168.

CAS  Article  Google Scholar 

Oh KW, Ahn CH. A review of microvalves. J Micromech Microeng. 2006;16(5):R13.

Article  Google Scholar 

Wu Z, Nguyen N-T. Convective–diffusive transport in parallel lamination micromixers. Microfluid Nanofluidics. 2005;1(3):208–17.

Article  Google Scholar 

Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev. 2010;39(3):1153–82.

CAS  PubMed  Article  Google Scholar 

Brzozka Z, Jastrzebska E. Cardiac Cell Culture Technologies. Cham: Springer International Publishing; 2018.

Book  Google Scholar 

Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9.

CAS  PubMed  Article  Google Scholar 

Hu G, Li D. Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci. 2007;62(13):3443–54.

CAS  Article  Google Scholar 

Li Y, Gao A, Yu L. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device. Appl Biochem Biotechnol. 2016;178(1):114–25.

CAS  PubMed  Article  Google Scholar 

Wu W, Rezai P, Hsu H, Selvaganapathy P. Materials and methods for the microfabrication of microfluidic biomedical devices. Microfluidic devices for biomedical applications: Elsevier; 2013. p. 3–62.

Google Scholar 

Cho SK, Zhao Y, Kim CJ. Concentration and binary separation of micro particles for droplet-based digital microfluidics. Lab Chip. 2007;7(4):490–8.

CAS  PubMed  Article  Google Scholar 

Voldman J, Gray ML, Schmidt MA. Microfabrication in biology and medicine. Annu Rev Biomed Eng. 1999;1:401–25.

CAS  PubMed  Article  Google Scholar 

Huang CW, Cheng JY, Yen MH, Young TH. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens Bioelectron. 2009;24(12):3510–6.

CAS  PubMed  Article  Google Scholar 

Tata U, Rao SM, Sharma A, Pabba K, Pokhrel K, Adhikari B, et al. Study of lung-metastasized prostate cancer cell line chemotaxis to epidermal growth factor with a BIOMEMS device. Adv Nat Sci Nanosci Nanotechnol. 2012;3(3):035007.

Article  CAS  Google Scholar 

Zhu S, Li H, Yang M, Pang SW. Label-free detection of live cancer cells and DNA hybridization using 3D multilayered plasmonic biosensor. Nanotechnol. 2018;29(36):365503.

Article  CAS  Google Scholar 

Huang XJ. Nanotechnology research: new nanostructures, nanotubes and nanofibers. New York: Nova Publishers; 2008.

Murlidhar V, Rivera-Báez L, Nagrath S. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins? Small. 2016;12(33):4450–63.

CAS  PubMed  Article  Google Scholar 

Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2012;84(2):487–515.

CAS  PubMed  Article  Google Scholar 

van Heeren H. Standards for connecting microfluidic devices? Lab Chip. 2012;12(6):1022–5.

PubMed  Article  CAS  Google Scholar 

Mohammed MI, Haswell S, Gibson I. Lab-on-a-chip or Chip-in-a-lab: Challenges of Commercialization Lost in Translation. Procedia Technol. 2015;20:54–9.

Article  Google Scholar 

Temiz Y, Lovchik RD, Kaigala GV, Delamarche E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron Eng. 2015;132:156–75.

CAS  Article  Google Scholar 

van Heeren H, Atkins T, Verplanck N, Peponnet C, Hewkin P, Blom M, et al. Design Guideline for Microfluidic Device and Component Interfaces (Part 2). MFM, Version. 2017;3:1–11.

Google Scholar 

Dekker S, Isgor PK, Feijten T, Segerink LI, Odijk M. From chip-in-a-lab to lab-on-a-chip: a portable Coulter counter using a modular platform. Microsyst Nanoeng. 2018;4:34.

PubMed  PubMed Central  Article  Google Scholar 

Borland LM, Kottegoda S, Phillips KS, Allbritton NL. Chemical analysis of single cells. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:191–227.

CAS  Article  Google Scholar 

Chao TC, Ros A. Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface. 2008;5 Suppl 5(Suppl 2):S139-50.

Google Scholar 

Nguyen T, ZoëgaAndreasen S, Wolff A, Duong Bang D. From Lab on a Chip to Point of Care Devices: The Role of Open Source Microcontrollers. Micromachines (Basel). 2018;9(8):403.

Article  Google Scholar 

Manz A, Graber N, Widmer Ha. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chem. 1990;1(1–6):244–8.

CAS  Article  Google Scholar 

Becker H. Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip. 2009;9(15):2119–22.

CAS  PubMed  Article  Google Scholar 

Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32(7):347–50.

CAS  PubMed  Article  Google Scholar 

Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12(12):2118–34.

CAS  PubMed  Article  Google Scholar 

Qian W, Zhang Y, Chen W. Capturing Cancer: Emerging Microfluidic Technologies for t

留言 (0)

沒有登入
gif