Trafficking in blood vessel development

Hunt SD, Stephens DJ (2011) The role of motor proteins in endosomal sorting. Biochem Soc Trans 39(5):1179–1184

CAS  PubMed  Article  Google Scholar 

Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625

CAS  PubMed  Article  Google Scholar 

Kempers L et al (2021) The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 24(3):695–714

CAS  PubMed  PubMed Central  Article  Google Scholar 

Agola JO et al (2011) Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 80(4):305–318

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mizuno-Yamasaki E, Rivera-Molina F, Novick P (2012) GTPase networks in membrane traffic. Annu Rev Biochem 81:637–659

CAS  PubMed  PubMed Central  Article  Google Scholar 

Muller MP, Goody RS (2018) Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases 9(1–2):5–21

PubMed  Article  CAS  Google Scholar 

Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103(32):11821–11827

CAS  PubMed  PubMed Central  Article  Google Scholar 

Homma Y, Hiragi S, Fukuda M (2021) Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 288(1):36–55

CAS  PubMed  Article  Google Scholar 

Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

CAS  PubMed  Article  Google Scholar 

Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149

CAS  PubMed  Article  Google Scholar 

Pfeffer SR (2017) Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell 28(6):712–715

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chappell JC, Wiley DM, Bautch VL (2012) How blood vessel networks are made and measured. Cells Tissues Organs 195(1–2):94–107

PubMed  Article  Google Scholar 

Arima S et al (2011) Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138(21):4763–4776

CAS  PubMed  Article  Google Scholar 

Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86(2):226–235

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ballermann BJ, Obeidat M (2014) Tipping the balance from angiogenesis to fibrosis in CKD. Kidney Int Suppl (2011) 4(1):45–52

CAS  Article  Google Scholar 

Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

CAS  PubMed  Article  Google Scholar 

Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xie Y et al (2019) Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins. Sci Rep 9(1):13342

PubMed  PubMed Central  Article  CAS  Google Scholar 

Smith GA et al (2016) VEGFR2 trafficking, signaling and proteolysis is regulated by the ubiquitin isopeptidase USP8. Traffic 17(1):53–65

CAS  PubMed  Article  Google Scholar 

Simons M (2012) An inside view: VEGF receptor trafficking and signaling. Physiology (Bethesda) 27(4):213–222

CAS  Google Scholar 

Basagiannis D et al (2017) Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner. Sci Rep 7(1):45035

CAS  PubMed  PubMed Central  Article  Google Scholar 

Basagiannis D et al (2016) VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis. J Cell Sci 129(21):4091–4104

CAS  PubMed  Google Scholar 

Jopling HM et al (2014) Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cells 3(2):363–385

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gampel A et al (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108(8):2624–2631

CAS  PubMed  Article  Google Scholar 

Labrecque L et al (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14(1):334–347

CAS  PubMed  PubMed Central  Article  Google Scholar 

Singh V, Lamaze C (2020) Membrane tension buffering by caveolae: a role in cancer? Cancer Metastasis Rev 39(2):505–517

CAS  PubMed  Article  Google Scholar 

Sinha B et al (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144(3):402–413

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lanzetti L et al (2004) Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429(6989):309–314

CAS  PubMed  Article  Google Scholar 

Goh LK, Sorkin A (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5(5):a017459

PubMed  PubMed Central  Article  CAS  Google Scholar 

Saxena S et al (2005) The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 25(47):10930–10940

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vanlandingham PA, Ceresa BP (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 284(18):12110–12124

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pinilla-Macua I et al (2017) EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. Elife 6:e31993

PubMed  PubMed Central  Article  Google Scholar 

Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20(3):256–275

CAS  PubMed  Article  Google Scholar 

Gourlaouen M et al (2013) Essential role for endocytosis in the growth factor-stimulated activation of ERK1/2 in endothelial cells. J Biol Chem 288(11):7467–7480

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yoshioka K et al (2012) Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18(10):1560–1569

CAS  PubMed  Article  Google Scholar 

Bhattacharya R et al (2005) Regulatory role of dynamin-2 in VEGFR-2/KDR-mediated endothelial signaling. FASEB J 19(12):1692–1694

CAS  PubMed  Article  Google Scholar 

Basagiannis D, Christoforidis S (2016) Constitutive endocytosis of VEGFR2 protects the receptor against shedding. J Biol Chem 291(32):16892–16903

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hsu C et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232

CAS  PubMed  PubMed Central  Article  Google Scholar 

Itoh T, Fukuda M (2006) Identification of EPI64 as a GTPase-activating protein specific for Rab27A. J Biol Chem 281(42):31823–31831

CAS  PubMed  Article  Google Scholar 

Kofler N et al (2018) The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. J Biol Chem 293(13):4805–4817

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif