Deciphering β-tubulin gene of carbendazim resistant Fusarium solani isolate and its comparison with other Fusarium species

Albertini C, Gredt M, Leroux P (1999) Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic Biochem Physiol 64:17–31. https://doi.org/10.1006/pest.1999.2406

CAS  Article  Google Scholar 

Al-Hatmi AMS, Ahmed SA, van Diepeningen AD, Drogari-Apiranthitou M, Verweij PE, Meis JF, de Hoog GS (2018) Fusarium metavorans sp. nov.: the frequent opportunist “FSSC6.” Med Mycol 56:S144–S152. https://doi.org/10.1093/mmy/myx107

CAS  Article  Google Scholar 

Andrade AC, Del Sorbo G, Van Nistelrooy JGM, De Waard MA (2000) The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997. https://doi.org/10.1099/00221287-146-8-1987

CAS  Article  PubMed  Google Scholar 

Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201. https://doi.org/10.1007/s10327-014-0509-3

CAS  Article  Google Scholar 

Avenot HF, Morgan DP, Quattrini J, Michailides TJ (2020) Resistance to thiophanate-methyl in Botrytis cinerea isolates from Californian vineyards and Pistachio and Pomegranate Orchards. Plant Dis 104:1069–1075. https://doi.org/10.1094/PDIS-02-19-0353-RE

CAS  Article  PubMed  Google Scholar 

Begerow D, John B, Oberwinkler F (2004) Evolutionary relationships among β-tubulin gene sequences of basidiomycetous fungi. Mycol Res 108:1257–1263. https://doi.org/10.1017/S0953756204001066

CAS  Article  PubMed  Google Scholar 

Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:510–514. https://doi.org/10.1093/nar/gkp322

CAS  Article  Google Scholar 

Bogale M, Steenkamp ET, Wingfield MJ, Wingfield BD (2009) Diverse Fusarium solani isolates colonise agricultural environments in Ethiopia. Eur J Plant Pathol 124:369–378

Article  Google Scholar 

Chen C, Wang J, Luo Q, Yuan S, Zhou M (2007) Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag Sci 63:1201–1207. https://doi.org/10.1002/ps.1449

CAS  Article  PubMed  Google Scholar 

Chen Z, Gao T, Liang S et al (2014) Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides. FEMS Microbiol Lett 357:77–84. https://doi.org/10.1111/1574-6968.12504

CAS  Article  PubMed  Google Scholar 

Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222. https://doi.org/10.1021/bi00699a001

CAS  Article  PubMed  Google Scholar 

Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276. https://doi.org/10.1146/annurev.bi.47.070178.001343

CAS  Article  PubMed  Google Scholar 

Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158. https://doi.org/10.1111/mpp.12289

Article  PubMed  Google Scholar 

D’Addazio V, dos Santos RAA, Leitao ASB et al (2016) Evaluation of in vitro inhibition of mycelial growth of Fusarium solani f. sp. piperis by different products in Brazil. Afric J Microbiol Res 10(47):1992–1998. https://doi.org/10.58897/AJMR2016.8292

Article  Google Scholar 

De Vries SJ, Van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897. https://doi.org/10.1038/nprot.2010.32

CAS  Article  PubMed  Google Scholar 

Deber CM, Glibowicka M, Woolley GA (1990) Conformations of proline residues in membrane environments. Biopolymers 29:149–157. https://doi.org/10.1002/bip.360290120

CAS  Article  PubMed  Google Scholar 

Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. https://doi.org/10.1021/ja026939x

CAS  Article  PubMed  Google Scholar 

Dorugade SP, Madhale SV, Sardesai VA, Kamble SS (2021) Survival ability of benomyl resistant isolate of Fusarium solani causing dry rot of elephant foot yam. Bioinfolet 18(1B):197–198

Google Scholar 

Dutta S, Tarafder M, Islam R, Datta B (2018) Characterization of cellulolytic enzymes of Fusarium soil Isolates. Biocatal Agric Biotechnol 14:279–285

Article  Google Scholar 

Einax E, Voigt K (2003) Oligonucleotide primers for universal amplification of β-tubulin genes facilitate phylogenetic analyses in the regnum Fungi. Org Divers Evol 3(3):185–194

Article  Google Scholar 

Geiser DM, Al-Hatmi A, Aoki T, et al (2020) Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex. Phytopathology® 1–64. https://doi.org/10.1094/phyto-08-20-0330-le

Grosdidier A, Zoete V, Michielin O (2007) EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins 67:1010–1025. https://doi.org/10.1002/prot.21367

CAS  Article  PubMed  Google Scholar 

Gupta PK, Singh SK, Shikha S (2020) In vitro efficacy of different fungicides against Fusarium solani isolate causing root rot of papaya (Carica papaya L.). Int J Chem Stud 8(3):221–224. https://doi.org/10.22271/chemi.2020.v8.i3c.9229

CAS  Article  Google Scholar 

Herron DA, Wingfield MJ, Wingfield BD et al (2015) Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Stud Mycol 80:131–150. https://doi.org/10.1016/j.simyco.2014.12.001

CAS  Article  PubMed  PubMed Central  Google Scholar 

Horio T, Murata T, Murata T (2014) The role of dynamic instability in microtubule organization. Front Plant Sci 5:1–11. https://doi.org/10.3389/fpls.2014.00511

Article  Google Scholar 

Hurley JH, Mason DA, Matthews BW (1992) Flexible-geometry conformational energy maps for the amino acid residue preceding a proline. Biopolymers 32:1443–1446. https://doi.org/10.1002/bip.360321104

CAS  Article  PubMed  Google Scholar 

Kawchuk LM, Hutchison LJ, Verhaeghe CA et al (2002) Isolation of the β-tubulin gene and characterization of thiabendazole resistance in Gibberella pulicaris. Can J Plant Pathol 24:233–238. https://doi.org/10.1080/07060660309507001

CAS  Article  Google Scholar 

Kolattukudy PE, Gamble DL (1995) Nectria haematococca: pathogenesis and host specificity in plant diseases. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant pathogenic fungi and nematodes, vol 2. Eukaryotes Pergamon, Oxford, pp 83–102

Google Scholar 

Kozakov D, Hall DR, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278. https://doi.org/10.1038/nprot.2016.169

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leslie JF, Summerell BA (2008) The Fusarium laboratory manual. Wiley, New York

Google Scholar 

Liu S, Liu J, Fu L et al (2020) Baseline sensitivity of Fusarium graminearum from wheat fields in Henan, China, to metconazole and analysis of cross resistance with carbendazim and phenamacril. J Phytopathol 168:156–161. https://doi.org/10.1111/jph.12874

CAS  Article  Google Scholar 

Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863. https://doi.org/10.1016/j.cropro.2005.01.011

CAS  Article  Google Scholar 

MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218:397–412. https://doi.org/10.1016/0022-2836(91)90721-H

CAS  Article  PubMed  Google Scholar 

Msiska Z, Morton JB (2009) Isolation and sequence analysis of a beta-tubulin gene from arbuscular mycorrhizal fungi. Mycorrhiza 19:501–513. https://doi.org/10.1007/s00572-009-0248-z

CAS  Article  PubMed  Google Scholar 

Nakaune R, Nakano M (2007) Benomyl resistance of Colletotrichum acutatum is caused by enhanced expression of β-tubulin 1 gene regulated by putative leucine zipper protein CaBEN1. Fungal Genet Biol 44:1324–1335. https://doi.org/10.1016/j.fgb.2007.03.007

CAS  Article  PubMed  Google Scholar 

Nakaune R, Adachi K, Nawata O et al (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol 64:3983–3988. https://doi.org/10.1128/aem.64.10.3983-3988.1998

CAS  Article  PubMed  PubMed Central  Google Scholar 

Narayanan P et al (2015) Efficacy of bio-control agents and fungicides in management of mulberry wilt caused by Fusarium solani. http://ischolar.info/index.php/jbc/article/view/79116

Nogales E, Downing KH, Amos LA, Lowe J (1998) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Mol Biol 5:451–458. https://doi.org/10.1038/nsb0698-45

CAS  Article  Google Scholar 

O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919–938. https://doi.org/10.1080/00275514.2000.12061237

Article  Google Scholar 

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116. https://doi.org/10.1006/mpev.1996.0376

Article  PubMed  Google Scholar 

O’Donnell K, Rooney AP, Proctor RH et al (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31. https://doi.org/10.1016/j.fgb.2012.12.004

CAS  Article  PubMed  Google Scholar 

O’Donnell K, Al-Hatmi AMS, Aoki T et al (2020) No to Neocosmospora: phylogenomic and practical reasons for continued inclusion of the Fusarium solani species complex in the genus Fusarium. mSphere. https://doi.org/10.1128/msphere.00810-20

Article  PubMed  PubMed Central  Google Scholar 

O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493. https://doi.org/10.1080/00275514.1998.12026933

CAS  Article  Google Scholar 

Padvi SA, Hingole DG, Khaire PB (2018) In vitro efficacy of fungicides against Fusarium solani incited by dry root rot of sweet orange. J Pharmaconosy Phytochem 7(4):3270–3273

留言 (0)

沒有登入
gif