KIT is dispensable for physiological organ vascularisation in the embryo

Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039

CAS  Article  Google Scholar 

Canu G, Ruhrberg C (2021) First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis 24(2):199–211. https://doi.org/10.1007/s10456-021-09783-9

Article  Google Scholar 

Plein A, Fantin A, Denti L, Pollard JW, Ruhrberg C (2018) Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature 562(7726):223–228. https://doi.org/10.1038/s41586-018-0552-x

CAS  Article  Google Scholar 

Feng T, Gao Z, Kou S, Huang X, Jiang Z, Lu Z, Meng J, Lin CP, Zhang H (2020) No evidence for erythro-myeloid progenitor-derived vascular endothelial cells in multiple organs. Circ Res 127(10):1221–1232. https://doi.org/10.1161/CIRCRESAHA.120.317442

CAS  Article  Google Scholar 

McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, Kingsley PD, Koniski AD, Palis J (2015) Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep 11(12):1892–1904. https://doi.org/10.1016/j.celrep.2015.05.036

CAS  Article  Google Scholar 

Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551. https://doi.org/10.1038/nature13989

CAS  Article  Google Scholar 

Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J, Low I, Forsberg EC, Poidinger M, Zolezzi F, Larbi A, Ng LG, Chan JK, Greter M, Becher B, Samokhvalov IM, Merad M, Ginhoux F (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42(4):665–678. https://doi.org/10.1016/j.immuni.2015.03.011

CAS  Article  Google Scholar 

Sanchez MJ, Holmes A, Miles C, Dzierzak E (1996) Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. Immunity 5(6):513–525. https://doi.org/10.1016/s1074-7613(00)80267-8

CAS  Article  Google Scholar 

Goldie LC, Lucitti JL, Dickinson ME, Hirschi KK (2008) Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 112(8):3194–3204. https://doi.org/10.1182/blood-2008-02-139055

CAS  Article  Google Scholar 

Fantin A, Tacconi C, Villa E, Ceccacci E, Denti L, Ruhrberg C (2021) KIT is required for fetal liver hematopoiesis. Front Cell Dev Biol in press. https://doi.org/10.3389/fcell.2021.648630

Fantin A, Vieira JM, Plein A, Maden CH, Ruhrberg C (2013) The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat Protoc 8(2):418–429. https://doi.org/10.1038/nprot.2013.015

CAS  Article  Google Scholar 

Tata M, Ruhrberg C, Fantin A (2015) Vascularisation of the central nervous system. Mech Dev 138(Pt 1):26–36. https://doi.org/10.1016/j.mod.2015.07.001

CAS  Article  Google Scholar 

Matsui J, Wakabayashi T, Asada M, Yoshimatsu K, Okada M (2004) Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem 279(18):18600–18607. https://doi.org/10.1074/jbc.M311643200

CAS  Article  Google Scholar 

Kim KL, Meng Y, Kim JY, Baek EJ, Suh W (2011) Direct and differential effects of stem cell factor on the neovascularization activity of endothelial progenitor cells. Cardiovasc Res 92(1):132–140. https://doi.org/10.1093/cvr/cvr161

CAS  Article  Google Scholar 

Kim KL, Seo S, Kim JT, Kim J, Kim W, Yeo Y, Sung JH, Park SG, Suh W (2019) SCF (Stem Cell Factor) and cKIT modulate pathological ocular neovascularization. Arterioscler Thromb Vasc Biol 39(10):2120–2131. https://doi.org/10.1161/ATVBAHA.119.313179

CAS  Article  Google Scholar 

Fang S, Wei J, Pentinmikko N, Leinonen H, Salven P (2012) Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol 10(10):e1001407. https://doi.org/10.1371/journal.pbio.1001407

CAS  Article  Google Scholar 

Mansuroglu T, Ramadori P, Dudas J, Malik I, Hammerich K, Fuzesi L, Ramadori G (2009) Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma. Lab Invest 89(5):562–574. https://doi.org/10.1038/labinvest.2009.15

CAS  Article  Google Scholar 

Inverso D, Shi J, Lee KH, Jakab M, Ben-Moshe S, Kulkarni SR, Schneider M, Wang G, Komeili M, Velez PA, Riedel M, Spegg C, Ruppert T, Schaeffer-Reiss C, Helm D, Singh I, Boutros M, Chintharlapalli S, Heikenwalder M, Itzkovitz S, Augustin HG (2021) A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie-Wnt signaling axis in the liver. Dev Cell. https://doi.org/10.1016/j.devcel.2021.05.001

Article  Google Scholar 

Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ (2020) Capillary cell-type specialization in the alveolus. Nature 586(7831):785–789. https://doi.org/10.1038/s41586-020-2822-7

CAS  Article  Google Scholar 

Suzuki T, Suzuki S, Fujino N, Ota C, Yamada M, Suzuki T, Yamaya M, Kondo T, Kubo H (2014) c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs. Am J Physiol Lung Cell Mol Physiol 306(9):L855-865. https://doi.org/10.1152/ajplung.00211.2013

CAS  Article  Google Scholar 

Tabula Muris C, Overall c, Logistical c, Organ c, processing, Library p, sequencing, Computational data a, Cell type a, Writing g, Supplemental text writing g, Principal i (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562(7727):367-372. https://doi.org/10.1038/s41586-018-0590-4

Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. Elife. https://doi.org/10.7554/eLife.53072

Article  Google Scholar 

Kalucka J, de Rooij L, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, Garcia-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P (2020) Single-cell transcriptome atlas of murine endothelial cells. Cell. https://doi.org/10.1016/j.cell.2020.01.015

Article  Google Scholar 

Schupp JC, Adams TS, Cosme C Jr, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, Sauler M, DeIuliis G, Ahangari F, Neumark N, Habermann AC, Gutierrez AJ, Bui LT, Lafyatis R, Pierce RW, Meyer KB, Nawijn MC, Teichmann SA, Banovich NE, Kropski JA, Niklason LE, Pe’er D, Yan X, Homer RJ, Rosas IO, Kaminski N (2021) Integrated single cell atlas of endothelial cells of the human lung. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.052318

Article  Google Scholar 

La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, Borm LE, Stott SRW, Toledo EM, Villaescusa JC, Lonnerberg P, Ryge J, Barker RA, Arenas E, Linnarsson S (2016) Molecular diversity of midbrain development in mouse, human, and stem cells. Cell. https://doi.org/10.1016/j.cell.2016.09.027

Article  Google Scholar 

Wang X, Yang L, Wang YC, Xu ZR, Feng Y, Zhang J, Wang Y, Xu CR (2020) Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res 30(12):1109–1126. https://doi.org/10.1038/s41422-020-0378-6

CAS  Article  Google Scholar 

Negretti NM, Plosa EJ, Benjamin JT, Schuler BA, Habermann AC, Jetter CS, Gulleman P, Bunn C, Hackett AN, Ransom M, Taylor CJ, Nichols D, Matlock BK, Guttentag SH, Blackwell TS, Banovich NE, Kropski JA, Sucre JMS (2021) A single-cell atlas of mouse lung development. Development. https://doi.org/10.1242/dev.199512

Article  Google Scholar 

Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840. https://doi.org/10.1182/blood-2009-12-257832

CAS  Article  Google Scholar 

Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn M (2021) The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 37(11):110103. https://doi.org/10.1016/j.celrep.2021.110103

CAS  Article  Google Scholar 

Frame JM, Fegan KH, Conway SJ, McGrath KE, Palis J (2016) Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem cells 34(2):431–444. https://doi.org/10.1002/stem.2213

CAS  Article  Google Scholar 

McGrath KE, Frame JM, Fromm GJ, Koniski AD, Kingsley PD, Little J, Bulger M, Palis J (2011) A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. Blood 117(17):4600–4608. https://doi.org/10.1182/blood-2010-12-325357

CAS  Article  Google Scholar 

Vieira JM, Schwarz Q, Ruhrberg C (2007) Selective requirements for NRP1 ligands during neurovascular patterning. Development 134(10):1833–1843. https://doi.org/10.1242/dev.002402

CAS  Article  Google Scholar 

Soares-da-Silva F, Freyer L, Elsaid R, Burlen-Defranoux O, Iturri L, Sismeiro O, Pinto-do OP, Gomez-Perdiguero E, Cumano A (2021) Yolk sac, but not hematopoietic stem cell-derived progenitors, sustain erythropoiesis throughout murine embryonic life. J Exp Med. https://doi.org/10.1084/jem.20201729

Article  Google Scholar 

Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM, Hofmann F, Schemann M, Rad R, Storr MA, Schmid RM, Schneider G, Saur D (2013) Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 4:1630. https://doi.org/10.1038/ncomms2626

CAS  Article  Google Scholar 

Heger K, Seidler B, Vahl JC, Schwartz C, Kober M, Klein S, Voehringer D, Saur D, Schmidt-Supprian M (2014) CreER(T2) expression from within the c-Kit gene locus allows efficient inducible gene targeting in and ablation of mast cells. Eur J Immunol 44(1):296–306. https://doi.org/10.1002/eji.201343731

CAS  Article  Google Scholar 

van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, Middleton RC, Marban E, Molkentin JD (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337–341. https://doi.org/10.1038/nature13309

CAS  Article  Google Scholar 

Gama Sosa MA, De Gasperi R, Perez GM, Hof PR, Elder GA (2020) Hemovasculogenic origin of blood vessels in the developing mouse brain. J Comp Neurol. https://doi.org/10.1002/cne.24951

Article  Google Scholar 

Li Z, Lan Y, He W, Chen D, Wang J, Zhou F, Wang Y, Sun H, Chen X, Xu C, Li S, Pang Y, Zhang G, Yang L, Zhu L, Fan M, Shang A, Ju Z, Luo L, Ding Y, Guo W, Yuan W, Yang X, Liu B (2012) Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11(5):663–675. https://doi.org/10.1016/j.stem.2012.07.004

CAS  Article  Google Scholar 

Li Z, Vink CS, Mariani SA, Dzierzak E (2016) Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head. Dev Biol 416(1):34–41. https://doi.org/10.1016/j.ydbio.2016.05.031

CAS  Article  Google Scholar 

Hart T, Komori HK, LaMere S, Podshivalova K, Salomon DR (2013) Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 14:778. https://doi.org/10.1186/1471-2164-14-778

CAS  Article  Google Scholar 

Hirata T, Morii E, Morimoto M, Kasugai T, Tsujimura T, Hirota S, Kanakura Y, Nomura S, Kitamura Y (1993) Stem cell factor induces outgrowth of c-kit-positive neurites and supports the survival of c-kit-positive neurons in dorsal root ganglia of mouse embryos. Development 119(1):49–56

CAS  Article  Google Scholar 

Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR (2017) Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci Rep 7:44356. https://doi.org/10.1038/srep44356

CAS 

留言 (0)

沒有登入
gif