Interleukin-22-induced β‑defensin-2 expression by intranasal immunization with Streptococcus pneumoniae RrgB epitopes

Eze UA, Mustapha A, Nworie A. Streptococcus pneumoniae:: virulence factors and their role in pathogenesis. Cont J Med Res 2013;7:27–45. doi:10.5707/cjmedres.2013.7.1.27.45.

Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018;16:355-67. doi: 10.1038/s41579-018-0001-8.

Brooks LRK, Mias GI. Streptococcus pneumoniae’s virulence and host immunity: aging, diagnostics, and prevention. Front Immunol 2018;9 : 1-29. | https://doi.org/10.3389/fimmu.2018.01366.

Chang MS, Woo JH. The prevention of pneumococcal infections. Clin Exp Vaccine Res 2016;5:3. doi: 10.7774/cevr.2016.5.1.3.

Masomian M, Ahmad Z, Gew LT, Poh CL. Development of next generation streptococcus pneumoniae vaccines conferring broad protection. Vaccines 2020;8:1–23. doi: 10.3390/vaccines8010132.

Geno KA, Gilbert GL, Song JY, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 2015;28:871–99. doi: 10.1128/CMR.00024-15.

Lei Y, Zhao F, Shao J, et al. Application of built-in adjuvants for epitope-based vaccines. Peer J 2019; 6: e6185. doi: 10.7717/peerj.6185.

Xu Y, Yuen P-W, Lam J. Intranasal DNA vaccine for protection against respiratory infectious diseases: the delivery perspectives. Pharmaceutics 2014;6:378–415. doi: 10.3390/pharmaceutics6030378.

Mufida DC, Handono K, Prawiro SR, Santoso S. Identification of hemagglutinin protein from Streptococcus pneumoniae pili as a vaccine candidate by proteomic analysis. Turkish J Immunol 2018;6:8–15. DOI: 10.25002/tji.2018.742.

Trevejo-Nunez G, Elsegeiny W, Aggor FEYY, et al. Interleukin-22 (IL-22) binding protein constrains IL-22 activity, host defense, and oxidative phosphorylation genes during pneumococcal pneumonia. Infect Immun 2019;87:e00550-19. doi: 10.1128/IAI.00550-19.

Tsai HC, Wu R. Mechanisms of cholera toxin in the modulation of TH17 responses. Crit Rev Immunol 2015;35:135-52. doi: 10.1615/critrevimmunol.2015012295.

Mcaleer JP, Kolls JK. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev 2014 ;260:129-44. doi: 10.1111/imr.12183.

Widiatmaja DT, Mufida DC, Febianti Z. Pengaruh pemberian imunisasi intranasal ppitope protein RrgB 255-270 Streptococcus pneumoniae terhadap kadar IL-4. Sriwijaya J Med 2021;4:67–73.

Mufida DC, Agustina D, Armiyanti Y, Handono K, Prawiro SR, Santoso S. Intranasal immunization with the 54 kDa hemagglutinin pili protein of Streptococcus pneumoniae that increase the expression of β-defensin-2. Drug Invention Today 2019;11:2609–15.

Scharf S, Zahlten J, Szymanski K, Hippenstiel S, Suttorp N, N’Guessan PD. Streptococcus pneumoniae induces human β-defensin-2 and-3 in human lung epithelium. Exp Lung Res 2012;38:100-10. doi: 10.3109/01902148.2011.652802.

Díaz MF, Calderon K, Rojas-Neyra A, et al. for the COVID-19 Working Group in Perú. Development and pre-clinical evaluation of Newcasle disease virus-vectored SARS-CoV-2 intranasal vaccine candidate. bioRxiv preprint;2021. https://doi.org/10.1101/2021.03.07.434276.

Dahlan MS. Statistik untuk kedokteran dan kesehatan deskriptif, bivariat dan multivariat. Dilengkapi aplikasi menggunakan SPSS Edisi 6. Jkarta : Salemba Medika; 2014.

Olvera DPR, Gutiérrez CC. Multifunctional activity of the β-defensin-2 during respiratory infections. In: Immune response activation and immunomodulation. Tyagi RK, Bisen PS, editor. IntechOpen; 2019. DOI: 10.5772/intechopen.80611.

Wei HX, Wang B, Li B. IL-10 and IL-22 in mucosal immunity: driving protection and pathology. Front Immunol 2020;11:1315. doi: 10.3389/fimmu.2020.01315.

Moyat M, Bouzourene H, Ouyang W, Iovanna J, Renauld JC, Velin D. IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice. Mucosal Immunol 2017;10:271-81. doi: 10.1038/mi.2016.38.

Yang H, Kim DS. Peptide immunotherapy in vaccine development: from epitope to adjuvant. Adv Protein Chem Struct Biol 2015;99:1-14. doi: 10.1016/bs.apcsb.2015.03.001.

Stratmann T. Cholera toxin subunit b as adjuvant—an accelerator in protective immunity and a break in autoimmunity. Vaccines 2015;3:579–96. doi: 10.3390/vaccines3030579.

Leung JM, Davenport M, Wolff MJ, et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2014;7: 124–33. https://doi.org/10.1038/mi.2013.31.

Gentile MA, Melchiorre S, Emolo C, et al. Structural and functional characterization of the Streptococcus pneumoniae RrgB pilus backbone D1 domain. J Biol Chem 2011; 286: 14588–97. doi: 10.1074/jbc.M110.202739.

留言 (0)

沒有登入
gif