Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis

Cerexhe L, Easton C, Macdonald E, Renfrew L, Sculthorpe N. Blood lactate concentrations during rest and exercise in people with multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord. 2022;57:103454.

Article  Google Scholar 

Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2019;26(1):27–40.

Article  Google Scholar 

Carotenuto A, Valsasina P, de la Cruz MH, Cacciaguerra L, Preziosa P, Marchesi O, et al. Divergent time-varying connectivity of thalamic sub-regions characterizes clinical phenotypes and cognitive status in multiple sclerosis. Mol Psychiatry. 2022.

Kolbe SC, Garcia LM, Yu N, Boonstra FM, Dough M, Sinclair B, et al. Lesion volume in relapsing multiple sclerosis is associated with perivascular space enlargement at the level of the basal ganglia. Am J Neuroradiol. 2022;43(2):238–44.

Article  Google Scholar 

Virgilio E, Vecchio D, Crespi I, Puricelli C, Barbero P, Galli G, et al. Cerebrospinal fluid biomarkers and cognitive functions at multiple sclerosis diagnosis. J Neurol. 2022.

Solomon AJ, Klein EP, Bourdette D. “Undiagnosing” multiple sclerosis the challenge of misdiagnosis in MS. Neurology. 2012;78(24):1986–91.

Article  Google Scholar 

The Lancet Magazine. End of the road for daclizumab in multiple sclerosis. Lancet. 2018;391(10125):1000.

Metz LM, Liu W-Q. Effective treatment of progressive MS remains elusive. Lancet. 2018;391(10127):1239–40.

Article  Google Scholar 

Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388(10044):576–85.

Article  Google Scholar 

Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014;26(1):85–124.

Article  Google Scholar 

Barrett-Catton E, Ross ML, Asuri P. Multifunctional hydrogel nanocomposites for biomedical applications. Polymers. 2021;13(6):856.

Article  Google Scholar 

Chyzy A, Plonska-Brzezinska ME. Hydrogel properties and their impact on regenerative medicine and tissue engineering. Molecules. 2020;25(24):5795.

Article  Google Scholar 

Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R-Reports. 2020;140:100543.

Article  Google Scholar 

Zhang K, Gao G, Li Y, Song Y, Wen Y, Zhang X. Development and application of DNA hydrogel in biosensing. Prog Chem. 2021;33(10):1887–99.

Google Scholar 

Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle–hydrogel superstructures for biomedical applications. J Control Release. 2020;324:505–21.

Article  Google Scholar 

Lin PH, Dong Q, Chew SY. Injectable hydrogels in stroke and spinal cord injury treatment: a review on hydrogel materials, cell–matrix interactions and glial involvement. Mater Adv. 2021;2(8):2561–83.

Article  Google Scholar 

Jarrin S, Cabré S, Dowd E. The potential of biomaterials for central nervous system cellular repair. Neurochem Int. 2021;144:104971.

Article  Google Scholar 

Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–67.

Article  Google Scholar 

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.

Article  Google Scholar 

Le X, Lu W, Zhang J, Chen T. Recent Progress in biomimetic anisotropic hydrogel actuators. Adv Sci. 2019;6(5):1801584.

Article  Google Scholar 

Sheng H, Xue B, Qin M, Wang W, Cao Y. Preparation and applications of stretchable and tough hydrogels. Chem J Chinese Univ-Chinese. 2020;41(6):1194–207.

Google Scholar 

Song P, Ye D, Song S, Wang L, Zuo X. Preparation and biological applications of DNA hydrogel. Prog Chem. 2016;28(5):628–36.

Google Scholar 

Su X, Ge C, Chen L, Xu Y. Hydrogel-based sensing detection of Bacteria. Prog Chem. 2020;32(12):1908–16.

Google Scholar 

Xiao Y, Gu Y, Qin L, Chen L, Chen X, Cui W, et al. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B-Biointerfaces. 2021;200:11581.

Article  Google Scholar 

Xu J, Tsai Y-L, Hsu S-h. Design strategies of conductive hydrogel for biomedical applications. Molecules. 2020;25(22):5296.

Article  Google Scholar 

Yue S, He H, Li B, Hou T. Hydrogel as a Biomaterial for Bone Tissue Engineering: A Review. Nanomaterials (Basel). 2020;10(8):1511.

Article  Google Scholar 

Owens B. Multiple sclerosis. Nature. 2016;540(7631):S1–S.

Article  Google Scholar 

Briggs FBS, Hill E. Estimating the prevalence of multiple sclerosis using 56.6 million electronic health records from the United States. Mult Scler J. 2019;26(14):1948–52.

Article  Google Scholar 

Tintore M, Vidal-Jordana A, Sastre-Garriga J. Treatment of multiple sclerosis — success from bench to bedside. Nat Rev Neurol. 2019;15(1):53–8.

Article  Google Scholar 

Ryan L, Mills KHG. Sex differences regulate immune responses in experimental autoimmune encephalomyelitis and multiple sclerosis.Eur J Immunol. 2022;52(1):24–33.

Gourraud P-A, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis: an up-to-date review. Immunol Rev. 2012;248(1):87–103.

Article  Google Scholar 

Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36.

Article  Google Scholar 

Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge and future outlook. Eur Neurol. 2014;72(3–4):132–41.

Article  Google Scholar 

Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–36.

Article  Google Scholar 

Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S, et al. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res. 2015;63(1):58–69.

Article  Google Scholar 

Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–85.

Article  Google Scholar 

Segal BM, Stüve O. Primary progressive multiple sclerosis—why we are failing. Lancet. 2016;387(10023):1032–4.

Article  Google Scholar 

Cavanagh JJ, Levy M. Differential diagnosis of multiple sclerosis. Presse medicale (Paris, France : 1983). 2021:104092-.

Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389(10076):1336–46.

Article  Google Scholar 

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.

Article  Google Scholar 

Rovira À, Wattjes MP, Tintoré M, Tur C, Yousry TA, Sormani MP, et al. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nat Rev Neurol. 2015;11(8):471–82.

Article  Google Scholar 

Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M. Multiple sclerosis: therapeutic applications of advancing drug delivery systems. Biomed Pharmacother. 2017;86:343–53.

Article  Google Scholar 

Mukherjee N, Adak A, Ghosh S. Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. Soft Matter. 2020;16(44):10046–64.

Article  Google Scholar 

Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, et al. Emerging application of nanorobotics and artificial intelligence to cross the BBB: advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem Neurosci. 2021;12(11):1835–53.

Article  Google Scholar 

Oliveira AG, Gonçalves M, Ferreira H, Neves NM. Growing evidence supporting the use of mesenchymal stem cell therapies in multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2020;38:101860.

Article  Google Scholar 

Korshoj LE, Kielian T. Neuroimmune metabolism: uncovering the role of metabolic reprogramming in central nervous system disease. J Neurochem. 2021;158(1):8–13.

Article  Google Scholar 

Shimizu K, Agata K, Takasugi S, Goto S, Narita Y, Asai T, et al. New strategy for MS treatment with autoantigen-modified liposomes and their therapeutic effect. J Control Release. 2021;335:389–97.

Article  Google Scholar 

Kwiatkowski AJ, Stewart JM, Cho JJ, Avram D, Keselowsky BG. Nano and Microparticle emerging strategies for treatment of autoimmune diseases: multiple sclerosis and type 1 diabetes. Adv Healthcare Mater. 2020;9(11):e2000164.

Article  Google Scholar 

Boesen F, Nørgaard M, Trénel P, Rasmussen PV, Petersen T, Løvendahl B, et al. Longer term effectiveness of inpatient multidisciplinary rehabilitation on health-related quality of life in MS patients: a pragmatic randomized controlled trial – the Danish MS hospitals rehabilitation study. Mult Scler J. 2017;24(3):340–9.

Article  Google Scholar 

Fu L, Yu A, Lai G. Conductive hydrogel-based electrochemical sensor: a soft platform for capturing Analyte. Chemosensors. 2021;9(10):282.

Article  Google Scholar 

Fu L, Liu Z, Ge J, Guo M, Zhang H, Chen F, et al. (001) plan manipulation of α-Fe2O3 nanostructures for enhanced electrochemical Cr(VI) sensing. J Electroanal Chem. 2019;841:142–7.

Article  Google Scholar 

Abune L, Davis B, Wang Y. Aptamer-functionalized hydrogels: an emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(6):e1731.

Article  Google Scholar 

Avolio C, Ruggieri M, Giuliani F, Liuzzi GM, Leante R, Riccio P, et al. Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol. 2003;136(1):46–53.

Article  Google Scholar 

Benešová Y, Vašků A, Novotná H, Litzman J, Štourač P, Beránek M, et al. Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler J. 2009;15(3):316–22.

Article  Google Scholar 

Dhanjai SA, Kalambate PK, Mugo SM, Kamau P, Chen J, et al. Polymer hydrogel interfaces in electrochemical sensing strategies: a review. Trac-trends Anal Chem. 2019;118:488–501.

Article  Google Scholar 

Wang R, Li Y. Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron. 2013;42:148–55.

Article  Google Scholar 

Stair JL, Watkinson M, Krause S. Sensor materials for the detection of proteases. Biosens Bioelectron. 2009;24(7):2113–8.

Article  Google Scholar 

Biela A, Watkinson M, Meier UC, Baker D, Giovannoni G, Becer CR, et al. Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens Bioelectron. 2015;68:660–7.

Article  Google Scholar 

Ahmad N, Colak B, Gibbs MJ, Zhang D-W, Gautrot JE, Watkinson M, et al. Peptide cross-linked poly(2-oxazoline) as a sensor material for the detection of proteases with a quartz crystal microbalance. Biomacromolecules. 2019;20(7):2506–14.

Article  Google Scholar 

Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, et al. Recent advances in bioinspired hydrogels: materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng. 2021.

Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interf Sci. 2021;298:102553.

Article  Google Scholar 

Agrawal M, Prathyusha E, Ahmed H, Dubey SK, Kesharwani P, Singhvi G, et al. Biomaterials in treatment of Alzheimer’s disease. Neurochem Int. 2021;145:105008.

Article  Google Scholar 

Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel-based composites: Unlimited platforms for biosensors and diagnostics. View. 2021;2(6):20200165.

留言 (0)

沒有登入
gif