Progression in translational research on spinal cord injury based on microenvironment imbalance

Stover, S. L., DeVivo, M. J. & Go, B. K. History, implementation, and current status of the National Spinal Cord Injury Database. Arch. Phys. Med. Rehabil. 80, 1365–1371 (1999).

CAS  PubMed  Article  Google Scholar 

Parent, S., Barchi, S., LeBreton, M., Casha, S. & Fehlings, M. G. The impact of specialized centers of care for spinal cord injury on length of stay, complications, and mortality: a systematic review of the literature. J. Neurotrauma 28, 1363–1370 (2011).

PubMed  PubMed Central  Article  Google Scholar 

Injury, G. B. D. T. B. & Spinal Cord Injury, C. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 56–87 (2019).

Organization, W. H. International perspectives on spinal cord injury. Weed Res. 11, 314–316 (2013).

Google Scholar 

Kang, Y. et al. Epidemiology of worldwide spinal cord injury: a literature review. J. Neurorestoratol. 6, 1–9 (2017).

CAS  Article  Google Scholar 

Li, H. L. et al. Epidemiology of traumatic spinal cord injury in Tianjin, China: An 18-year retrospective study of 735 cases. J. Spinal Cord Med. 42, 778–785 (2019).

Chan, B. C., Cadarette, S. M., Wodchis, W. P., Krahn, M. D. & Mittmann, N. The lifetime cost of spinal cord injury in Ontario, Canada: A population-based study from the perspective of the public health care payer. J. Spinal Cord Med. 42, 184–193 (2019).

Stillman, M. D., Barber, J., Burns, S., Williams, S. & Hoffman, J. M. Complications of Spinal Cord Injury Over the First Year After Discharge From Inpatient Rehabilitation. Arch. Phys. Med. Rehabil. 98, 1800–1805 (2017).

LaPlaca, M. C., Simon, C. M., Prado, G. R. & Cullen, D. K. CNS injury biomechanics and experimental models. Prog. Brain Res. 161, 13–26 (2007).

CAS  PubMed  Article  Google Scholar 

Choo, A. M. et al. Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. Spine 6, 255–266 (2007).

PubMed  Article  Google Scholar 

Pineau, I. & Lacroix, S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 500, 267–285 (2007).

CAS  PubMed  Article  Google Scholar 

Palandi, J., Bobinski, F., de Oliveira, G. M. & Ilha, J. Neuropathic pain after spinal cord injury and physical exercise in animal models: a systematic review and meta-analysis. Neurosci. Biobehav Rev. 108, 781–795 (2020).

PubMed  Article  Google Scholar 

Gruner, J. A. A monitored contusion model of spinal cord injury in the rat. J. Neurotrauma 9, 123–126 (1992). discussion 126–128.

CAS  PubMed  Article  Google Scholar 

Stokes, B. T. Experimental spinal cord injury: a dynamic and verifiable injury device. J. Neurotrauma 9, 129–131 (1992).

CAS  PubMed  Article  Google Scholar 

Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A. & Lumpp, J. E. Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotrauma 20, 179–193 (2003).

PubMed  Article  Google Scholar 

Marcol, W. et al. Air gun impactor−a novel model of graded white matter spinal cord injury in rodents. J. Reconstr. Microsurg. 28, 561–568 (2012).

PubMed  Article  Google Scholar 

Alizadeh, A., Dyck, S. M. & Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: an overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 10, 282 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Rivlin, A. S. & Tator, C. H. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg. Neurol. 10, 38–43 (1978).

CAS  PubMed  Google Scholar 

Borgens, R. B. & Shi, R. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J. 14, 27–35 (2000).

CAS  PubMed  Article  Google Scholar 

Vanický, I., Urdzíková, L., Saganová, K., Cízková, D. & Gálik, J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma 18, 1399–1407 (2001).

PubMed  Article  Google Scholar 

Guha, A., Tator, C. H., Endrenyi, L. & Piper, I. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia 25, 324–339 (1987).

CAS  PubMed  Google Scholar 

Etz, D. C. et al. Spinal cord ischemia in open and endovascular thoracoabdominal aortic aneurysm repair: new concepts. J. Cardiovasc Surg. 55, 159–168 (2014).

CAS  Google Scholar 

Wynn, M. M. & Acher, C. W. A modern theory of spinal cord ischemia/injury in thoracoabdominal aortic surgery and its implications for prevention of paralysis. J. Cardiothorac. Vasc. Anesth. 28, 1088–1099 (2014).

PubMed  Article  Google Scholar 

Tarlov, I. M. & Keener, E. B. Subarachnoid hemorrhage and tumor implants from spinal sarcoma in an infant. Neurology 3, 384–390 (1953).

CAS  PubMed  Article  Google Scholar 

Saadoun, S., Bell, B. A., Verkman, A. S. & Papadopoulos, M. C. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain 131, 1087–1098 (2008).

PubMed  Article  Google Scholar 

Rosenzweig, E. S. & McDonald, J. W. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr. Opin. Neurol. 17, 121–131 (2004).

PubMed  Article  Google Scholar 

Li, X. et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 197, 20–31 (2019).

CAS  PubMed  Article  Google Scholar 

Li, J. & Lepski, G. Cell transplantation for spinal cord injury: a systematic review. Biomed. Res. Int. 2013, 786475 (2013).

PubMed  PubMed Central  Google Scholar 

Pastrana, E. et al. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J. Neurosci. 26, 5347–5359 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown, A. R. & Martinez, M. Thoracic spinal cord hemisection surgery and open-field locomotor assessment in the rat. J. Vis. Exp. https://doi.org/10.3791/59738 (2019).

Zörner, B. et al. Profiling locomotor recovery: comprehensive quantification of impairments after CNS damage in rodents. Nat. Methods 7, 701–708 (2010).

PubMed  Article  CAS  Google Scholar 

Tran, A. P., Warren, P. M. & Silver, J. The biology of regeneration failure and success after spinal cord injury. Physiol. Rev. 98, 881–917 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tator, C. H. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 5, 407–413 (1995).

CAS  PubMed  Article  Google Scholar 

Rowland, J. W., Hawryluk, G. W., Kwon, B. & Fehlings, M. G. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg. Focus 25, E2 (2008).

PubMed  Article  Google Scholar 

Hassannejad, Z. et al. The fate of neurons after traumatic spinal cord injury in rats: A systematic review. Iran. J. Basic Med. Sci. 21, 546–557 (2018).

PubMed  PubMed Central  Google Scholar 

Springer, J., Azbill, R. & Knapp, P. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med. 5, 943–946 (1999).

CAS  PubMed  Article  Google Scholar 

Choo, A., Liu, J., Dvorak, M., Tetzlaff, W. & Oxland, T. Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp. Neurol. 212, 490–506 (2008).

PubMed  Article  Google Scholar 

Liu, X. Z. et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 17, 5395–5406 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, M. et al. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J. Spinal Cord. Med. 38, 745–753 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).

CAS  PubMed  Article  Google Scholar 

Zhang, Q., Huang, C., Meng, B., Tang, T. S. & Yang, H. L. Changes in autophagy proteins in a rat model of spinal cord injury. Chin. J. Traumatol. 17, 193–197 (2014).

PubMed  Google Scholar 

Hernandez, D. et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74, 277–284 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tran, A. P., Warren, P. M. & Silver, J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPsigma and its impact on plasticity and regeneration after spinal cord injury. Exp. Neurol. 328, 113276 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ko, S. H., Apple, E. C., Liu, Z. & Chen, L. Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. Autophagy 16, 2052–2068 (2020).

Hwang, J. Y., Yan, J. & Zukin, R. S. Autophagy and synaptic plasticity: epigenetic regulation. Curr. Opin. Neurobiol. 59, 207–212 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ray, S. K. Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen. Res. 15, 1601–1612 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Lipinski, M. M., Wu, J., Faden, A. I. & Sarkar, C. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid. Redox Signal. 23, 565–577 (2015).

CAS 

留言 (0)

沒有登入
gif