Obesity, Hypovitaminosis D, and COVID-19: the Bermuda Triangle in Public Health

World Health Organization. WHO coronavirus (COVID-19) dashboard. Available from: https://covid19.who.int/ . [Accessed 8 Nov 2021].

Kalyanaraman Marcello R, Dolle J, Grami S, Adule R, Li Z, Tatem K, et al. New York city health + hospitals COVID-19 population health data team. Characteristics and outcomes of COVID-19 patients in New York city’s public hospital system. PLoS One 2020;15(12): e0243027. https://doi.org/10.1371/journal.pone.0243027.

Chawla D, Rizzo S, Zalocusky K, Keebler D, Chia J, Lindsay L, et al. Descriptive epidemiology of 16,780 hospitalized COVID-19 patients in the United States. 2020:2020.07.17.20156265. medRxiv. https://doi.org/10.1101/2020.07.17.20156265.

Vallianou NG, Evangelopoulos A, Kounatidis D, Stratigou T, Christodoulatos GS, Karampela I, et al. Diabetes mellitus and SARS-CoV-2 infection: pathophysiologic mechanisms and implications in management. Curr Diabetes Rev. 2020. https://doi.org/10.2174/1573399817666210101110253.

Article  Google Scholar 

• Dalamaga M, Christodoulatos GS, Karampela I, Vallianou N, Apovian CM. Understanding the co-epidemic of obesity and COVID-19: current evidence, comparison with previous epidemics, mechanisms, and preventive and therapeutic perspectives. Curr Obes Rep. 2021:1–30. https://doi.org/10.1007/s13679-021-00436-y. This interesting review summarizes current epidemiologic data on the association between obesity and COVID-19, compares data from previous pandemics and highlights the pathophysiologic role of obesity-related meta-inflammation with regard to COVID-19.

Obesity: preventing and managing the global epidemic: report of a WHO Consultation on Obesity, Geneva, 3–5 June 1997. World Health Organization. Available form: https://apps.who.int/iris/handle/10665/63854. [Accessed 17 July 2021]

Cashman KD, Vitamin D. deficiency: defining, prevalence, causes, and strategies of addressing. Calcif Tissue Int. 2020;106:14–29. https://doi.org/10.1007/s00223-019-00559-4.

CAS  Article  PubMed  Google Scholar 

Hughes DA, Norton R. Vitamin D and respiratory health. Clin Exp Immunol. 2009;158(1):20–5. https://doi.org/10.1111/j.1365-2249.2009.04001.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Jolliffe DA, Camargo CA Jr, Sluyter JD, Aglipay M, Aloia JF, Ganmaa D, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–292. https://doi.org/10.1016/S2213-8587(21)00051-6. This meta-analysis of 46 RCTs and more than 48,400 participants suggests that vitamin D supplementation is safe and is associated with a small reduction in the risk of acute respiratory infections.

Burn E, You SC, Sena AG, Kostka K, Abedtash H, Abrahão MTF, et al. An international characterisation of patients hospitalised with COVID-19 and a comparison with those previously hospitalised with influenza. medRxiv. 2020. https://doi.org/10.1101/2020.04.22.20074336.

Sattar N, Valabhji J. Obesity as a risk factor for severe COVID-19: summary of the best evidence and implications for health care. Curr Obes Rep. 2021;10(3):282–9. https://doi.org/10.1007/s13679-021-00448-8.

Article  PubMed  PubMed Central  Google Scholar 

Gu T, Mack JA, Salvatore M, Sankar SP, Valley TS, Singh K, et al. COVID-19 outcomes, risk factors and associations by race: a comprehensive analysis using electronic health records data in Michigan Medicine. medRxiv. 2020. https://doi.org/10.1101/2020.06.16.20133140.

•• Gao M, Piernas C, Astbury NM, Hippisley-Cox J, O’Rahilly S, Aveyard P, et al. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021. https://doi.org/10.1016/S2213-8587(21)00089-9. This large, prospective, community-based, cohort study in more than 6.9 million participants in England, UK demonstrated a J-shaped association between BMI and hospitalization due to COVID-19 with a nadir at BMI of 23 kg/m2 and a linear increase in ICU admission across the whole BMI range, independently of obesity-related comorbidities. The study also points out that the effect of increasing BMI to the relative risk for severe and critical COVID-19 is higher in adults < 40 years and those of Black ethnicity.

Popkin BM, Du S, Green WD, Beck MA, Algaith T, Herbst CH, et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21: e13128. https://doi.org/10.1111/obr.13128.

CAS  Article  Google Scholar 

Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Suryadinata H, et al. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14:1897–904. https://doi.org/10.1016/j.dsx.2020.09.029.

Article  PubMed  PubMed Central  Google Scholar 

Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic review and meta-analysis. J Med Virol. 2020. https://doi.org/10.1002/jmv.26677.

Article  PubMed  PubMed Central  Google Scholar 

Chu Y, Yang J, Shi J, Zhang P, Wang X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: a systematic review and meta-analysis. Eur J Med Res. 2020;25:64. https://doi.org/10.1186/s40001-020-00464-9.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chang TH, Chou CC, Chang LY. Effect of obesity and body mass index on coronavirus disease 2019 severity: a systematic review and meta-analysis. Obes Rev. 2020;21(11): e13089. https://doi.org/10.1111/obr.13089.

CAS  Article  PubMed  Google Scholar 

Földi M, Farkas N, Kiss S, Zádori N, Váncsa S, Szakó L, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: a systematic review and meta-analysis. Obes Rev. 2020;21: e13095. https://doi.org/10.1111/obr.13095.

CAS  Article  PubMed  Google Scholar 

Malik P, Patel U, Patel K, Martin M, Shah C, Mehta D, et al. Obesity a predictor of outcomes of COVID-19 hospitalized patients-a systematic review and meta-analysis. J Med Virol. 2021;93(2):1188–93. https://doi.org/10.1002/jmv.26555.

CAS  Article  PubMed  Google Scholar 

Hoong CWS, Hussain I, Aravamudan VM, Phyu EE, Lin JHX, Koh H. Obesity is associated with poor covid-19 outcomes: a systematic review and meta-analysis. Horm Metab Res. 2021;53(2):85–93. https://doi.org/10.1055/a-1326-2125.

CAS  Article  PubMed  Google Scholar 

Seidu S, Gillies C, Zaccardi F, Kunutsor SK, Hartmann-Boyce J, Yates T, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: a systematic review and meta-analysis. Endocrinol Diabetes Metab. 2020;4(1): e00176. https://doi.org/10.1002/edm2.176.

CAS  Article  PubMed Central  Google Scholar 

Hendren NS, de Lemos JA, Ayers C, Das SR, Rao A, Carter S, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 Cardiovascular Disease Registry. Circulation. 2021;143:135–44. https://doi.org/10.1161/circulationaha.120.051936.

CAS  Article  PubMed  Google Scholar 

Eastment MC, Berry K, Locke E, Green P, O’Hare A, Crothers K, et al. Body mass index (BMI) and outcomes of SARS-CoV-2 among US veterans. Obesity (Silver Spring). 2020. https://doi.org/10.1002/oby.23111.

Article  Google Scholar 

Aung N, Khanji MY, Munroe PB, Petersen SE. Causal inference for genetic obesity, cardiometabolic profile and COVID-19 susceptibility: a Mendelian randomization study. Front Genet. 2020;11: 586308. https://doi.org/10.3389/fgene.2020.586308.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leong A, Cole JB, Brenner LN, Meigs JB, Florez JC, Mercader JM. Cardiometabolic risk factors for COVID-19 susceptibility and severity: a Mendelian randomization analysis. PLoS Med. 2021;18:e1003553

•• Zhu Z, Hasegawa K, Ma B, Fujiogi M, Camargo CA Jr, Liang L. Association of obesity and its genetic predisposition with the risk of severe COVID-19: analysis of population-based cohort data. Metabolism. 2020;112:154345. https://doi.org/10.1016/j.metabol.2020.154345. In this study, the analysis of data from almost 0.5 million people from the UK Biobank showed that individuals with higher than normal BMI were at increased risk for severe COVID-19 in a dose-response way. For BMI above 25 kg/m2, the ORs ranged from 1.40 to 3.30, being higher for BMI ≥ 40 kg/m2. Also, the study concluded that central obesity and genetic predisposition for obesity are associated with a higher risk for severe COVID-19.

Muscogiuri G, Pugliese G, Barrea L, Savastano S, Colao A. Commentary: obesity: the “Achilles heel” for COVID-19? Metabolism. 2020;108: 154251. https://doi.org/10.1016/j.metabol.2020.154251.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuperberg SJ, Navetta-Modrov B. The role of obesity in the immunopathogenesis of COVID-19 respiratory disease and critical illness. Am J Respir Cell Mol Biol. 2021;65(1):13–21. https://doi.org/10.1165/rcmb.2020-0236TR.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dhurandhar NV, Bailey D, Thomas D. Interaction of obesity and infections. Obes Rev. 2015;16:1017–29. https://doi.org/10.1111/obr.12320.

CAS  Article  PubMed  Google Scholar 

McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127:5–13. https://doi.org/10.1172/jci88876.

Article  PubMed  PubMed Central  Google Scholar 

Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab. 2020;319:E105–9. https://doi.org/10.1152/ajpendo.00198.2020.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract. 2005;69:29–35. https://doi.org/10.1016/j.diabres.2004.11.007.

CAS  Article  PubMed  Google Scholar 

Karampela I, Christodoulatos GS, Dalamaga M. The role of adipose tissue and adipokines in sepsis: inflammatory and metabolic considerations, and the obesity paradox. Curr Obes Rep. 2019;8(4):434–457. https://doi.org/10.1007/s13679-019-00360-2.

Blokhin IO, Lentz SR. Mechanisms of thrombosis in obesity. Curr Opin Hematol. 2013;20:437–44. https://doi.org/10.1097/MOH.0b013e3283634443.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9. https://doi.org/10.1038/nm1267.

CAS  Article  PubMed  PubMed Central  Google Scholar 

van der Heijden DJ, van Leeuwen MAH, Janssens GN, Lenzen MJ, van de Ven PM, Eringa EC, et al. Body mass index is associated with microvascular endothelial dysfunction in patients with treated metabolic risk factors and suspected coronary artery disease. J Am Heart Assoc. 2017;6. https://doi.org/10.1161/jaha.117.006082.

Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte like cells in the severity of COVID-19 infections. Obesity (Silver Spring). 2020;28:1187–90. https://doi.org/10.1002/oby.22856.

CAS  Article  Google Scholar 

World Health Organization. Obesity and overweight. Geneva, Switzerland: World Health Organization. Available form: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. [Accessed 17 July 2021]

Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7. https://doi.org/10.1038/ijo.2008.102.

CAS  Article  Google Scholar 

Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12(Suppl 2):88S-101S. https://doi.org/10.1038/oby.2004.273.

Article  PubMed  Google Scholar 

Koliaki C, Liatis S, Dalamaga M, Kokkinos A. Sarcopenic obesity: epidemiologic evidence, pathophysiology, and therapeutic perspectives. Curr Obes Rep. 2019;8(4):458–71. https://doi.org/10.1007/s13679-019-00359-9.

Article  PubMed  Google Scholar 

Hill MA, Sowers JR, Mantzoros CS. Commentary: COVID-19 and obesity pandemics converge into a syndemic requiring urgent and multidisciplinary action. Metabolism. 2020;114: 154408. https://doi.org/10.1016/j.metabol.2020.154408.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Karampela I, Sakelliou A, Vallianou N, Christodoulatos GS, Magkos F, Dalamaga M. Vitamin D and obesity: current evidence and controversies. Curr Obes Rep. 2021;10(2):162–180. https://doi.org/10.1007/s13679-021-00433-1. This review summarizes current evidence from meta-analyses regarding vitamin D status in obesity, weight loss and post-bariatric surgery, highlights important methodological limitations of relevant studies, and discusses potential pathophysiologic mechanisms and important controversies. The authors conclude that obesity is associated with low vitamin D status, but weight loss has little effect on improving vitamin D levels. Moreover, vitamin D supplementation is not associated with weight loss, while it has shown contradicting results after bariatric surgery.

Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16:341–9. https://doi.org/10.1111/obr.12239.

CAS  Article  Google Scholar 

Rafiq S, Jeppesen PB. Body mass index, vitamin D, and type 2 diabetes: a systematic review and meta-analysis. Nutrients. 2018;10:1182. https://doi.org/10.3390/nu10091182.

CAS  Article  PubMed Central  Google Scholar 

Saneei P, Salehi-Abargouei A, Esmaillzadeh A. Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis. Obes Rev. 2013;14:393–404. https://doi.org/10.1111/obr.12016.

CAS  Article  PubMed  Google Scholar 

•• Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pil

留言 (0)

沒有登入
gif