Atrial fibrillation

Hindricks, G. et al.2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021).

Google Scholar 

Lip, G. Y. H. et al. Atrial fibrillation. Nat. Rev. Dis. Prim. 2, 16016 (2016).

Google Scholar 

Waldmann, V., Laredo, M., Abadir, S., Mondesert, B. & Khairy, P. Atrial fibrillation in adults with congenital heart disease. Int. J. Cardiol. 287, 148–154 (2019).

Google Scholar 

Teuwen, C. P. & de Groot, N. M. S. Atrial fibrillation: the next epidemic for patients with congenital heart disease. J. Am. Coll. Cardiol. 70, 2949–2950 (2017).

Google Scholar 

Teuwen, C. P. et al. Frequent atrial extrasystolic beats predict atrial fibrillation in patients with congenital heart defects. Europace 20, 25–32 (2018).

Google Scholar 

Darbar, D. et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J. Am. Coll. Cardiol. 41, 2185–2192 (2003).

Google Scholar 

Ellinor, P. T., Yoerger, D. M., Ruskin, J. N. & MacRae, C. A. Familial aggregation in lone atrial fibrillation. Hum. Genet. 118, 179–184 (2005).

Google Scholar 

Palatinus, J. A. & Das, S. Your father and Grandfather’s atrial fibrillation: a review of the genetics of the most common pathologic cardiac dysrhythmia. Curr. Genomics 16, 75–81 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Tucker, N. R., Clauss, S. & Ellinor, P. T. Common variation in atrial fibrillation: navigating the path from genetic association to mechanism. Cardiovasc. Res. 109, 493–501 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Zoni-Berisso, M., Lercari, F., Carazza, T. & Domenicucci, S. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6, 213–220 (2014).

PubMed  PubMed Central  Google Scholar 

Burdett, P. & Lip, G. Y. H. Atrial fibrillation in the United Kingdom: predicting costs of an emerging epidemic recognising and forecasting the cost drivers of atrial fibrillation-related costs. Eur. Heart J. Qual. Care Clin. Outcomes https://doi.org/10.1093/ehjqcco/qcaa093 (2020).

Article  Google Scholar 

Krittayaphong, R. et al. A randomized clinical trial of the efficacy of radiofrequency catheter ablation and amiodarone in the treatment of symptomatic atrial fibrillation. J. Med. Assoc. Thai. 86 (Suppl. 1), S8–S16 (2003).

Google Scholar 

Stabile, G. et al. Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation for the Cure of Atrial Fibrillation Study). Eur. Heart J. 27, 216–221 (2006).

Google Scholar 

Pappone, C. et al. A randomized trial of circumferential pulmonary vein ablation versus antiarrhythmic drug therapy in paroxysmal atrial fibrillation: the APAF Study. J. Am. Coll. Cardiol. 48, 2340–2347 (2006).

CAS  Google Scholar 

Calkins, H. et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14, e275–e444 (2017).

PubMed  PubMed Central  Google Scholar 

Blomstrom-Lundqvist, C. et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: The CAPTAF randomized clinical trial. JAMA 321, 1059–1068 (2019).

PubMed  PubMed Central  Google Scholar 

Mantovan, R. et al. Relationship of quality of life with procedural success of atrial fibrillation (AF) ablation and postablation AF burden: substudy of the STAR AF randomized trial. Can. J. Cardiol. 29, 1211–1217 (2013).

Google Scholar 

Brundel, B. J. J. M. et al. Induction of heat-shock response protects the heart against atrial fibrillation. Circ. Res. 99, 1394–1402 (2006).

CAS  Google Scholar 

Zhang, D. et al. Activation of histone deacetylase-6 (HDAC6) induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 129, 346–358 (2014).

CAS  Google Scholar 

Yao, C. et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138, 2227–2242 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Zhang, D. et al. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nat. Commun. 10, 1307 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Boriani, G. & Pettorelli, D. Atrial fibrillation burden and atrial fibrillation type: clinical significance and impact on the risk of stroke and decision making for long-term anticoagulation. Vasc. Pharmacol. 83, 26–35 (2016).

CAS  Google Scholar 

Charitos, E. I., Purerfellner, H., Glotzer, T. V. & Ziegler, P. D. Clinical classifications of atrial fibrillation poorly reflect its temporal persistence: insights from 1,195 patients continuously monitored with implantable devices. J. Am. Coll. Cardiol. 63, 2840–2848 (2014).

Google Scholar 

Schnabel, R. B. et al. 50 Year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386, 154–162 (2015).

PubMed  PubMed Central  Google Scholar 

Li, N. & Brundel, B. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation. Circ. Res. 127, 73–90 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

van Marion, D. M. S. et al. Atrial heat shock protein levels are associated with early postoperative and persistence of atrial fibrillation. Heart Rhythm 18, 1790–1798 (2021).

Google Scholar 

Li, J. et al. Blood-based 8-hydroxy-2′-deoxyguanosine level: a potential diagnostic biomarker for atrial fibrillation. Heart Rhythm 18, 271–277 (2021).

CAS  Google Scholar 

Zhang, J., Johnsen, S. P., Guo, Y. & Lip, G. Y. H. Epidemiology of atrial fibrillation: geographic/ecological risk factors, age, sex, genetics. Card. Electrophysiol. Clin. 13, 1–23 (2021).

Google Scholar 

Kornej, J., Borschel, C. S., Benjamin, E. J. & Schnabel, R. B. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circ. Res. 127, 4–20 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Lubitz, S. A. et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA 304, 2263–2269 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Lippi, G., Sanchis-Gomar, F. & Cervellin, G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. Int. J. Stroke 16, 217–221 (2021).

Google Scholar 

Allan, V. et al. Are cardiovascular risk factors also associated with the incidence of atrial fibrillation? A systematic review and field synopsis of 23 factors in 32 population-based cohorts of 20 million participants. Thromb. Haemost. 117, 837–850 (2017).

PubMed  PubMed Central  Google Scholar 

Zhang, S. et al. Low-carbohydrate diets and risk of incident atrial fibrillation: a prospective cohort study. J. Am. Heart Assoc. 8, e011955 (2019).

PubMed  PubMed Central  Google Scholar 

Rowan, C. J. et al. Very low prevalence and incidence of atrial fibrillation among Bolivian forager-farmers. Ann. Glob. Health 87, 18 (2021).

PubMed  PubMed Central  Google Scholar 

Rix, T. A. et al. A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial flutter-a Danish cohort study. Europace 16, 1554–1561 (2014).

Google Scholar 

Shen, J. et al. Dietary factors and incident atrial fibrillation: the Framingham Heart Study. Am. J. Clin. Nutr. 93, 261–266 (2011).

CAS  Google Scholar 

Chung, M. K. et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation 141, e750–e772 (2020).

Google Scholar 

Staerk, L. et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ 361, k1453 (2018).

PubMed  PubMed Central  Google Scholar 

Lee, S. R. et al. Association between clustering of unhealthy lifestyle factors and risk of new-onset atrial fibrillation: a nationwide population-based study. Sci. Rep. 10, 19224 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Tse, H. F. et al. Stroke prevention in atrial fibrillation — an Asian stroke perspective. Heart Rhythm 10, 1082–1088 (2013).

Google Scholar 

Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Fatkin, D., Santiago, C. F., Huttner, I. G., Lubitz, S. A. & Ellinor, P. T. Genetics of atrial fibrillation: state of the art in 2017. Heart Lung Circ. 26, 894–901 (2017).

Google Scholar 

Ellinor, P. T. et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 44, 670–675 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Dai, W. et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. eLife 8, e41814 (2019).

PubMed  PubMed Central  Google Scholar 

Gao, X. et al. Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIdelta expression in the aged atrium. Cardiovasc. Res. 114, 737–746 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Yan, J. et al. The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. J. Mol. Cell Cardiol. 114, 105–115 (2017).

PubMed  PubMed Central  Google Scholar 

Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50, 1225–1233 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet. 50, 1234–1239 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Teuwen, C. P. et al. Time course of atrial fibrillation in patients with congenital heart defects. Circ. Arrhythm. Electrophysiol. 8, 1065–1072 (2015).

Google Scholar 

Teuwen, C. P., Ramdjan, T. T. & de Groot, N. M. Management of atrial fibrillation in patients with congenital heart defects. Expert Rev. Cardiovasc. Ther. 13, 57–66 (2015).

CAS  Google Scholar 

Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

CAS  Google Scholar 

Kottkamp, H. et al. Time courses and quantitative analysis of atrial fibrillation episode number and duration after circular plus linear left atrial lesions: trigger elimination or substrate modification: early or delayed cure? J. Am. Coll. Cardiol. 44, 869–877 (2004).

留言 (0)

沒有登入
gif