Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria?

Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol. 1999;65:4734–40.

CAS  PubMed  PubMed Central  Google Scholar 

Turner RJ, Weiner JH, Taylor DE. Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology. 1999;145:2549–57.

CAS  PubMed  Google Scholar 

Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM. Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol. 2000;173:178–86.

CAS  PubMed  Google Scholar 

Walter EG, Taylor DE. Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid. 1992;27:52–64.

CAS  PubMed  Google Scholar 

Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Ann Rev Microbiol. 1996;50:753–89.

CAS  Google Scholar 

Silver S. Bacterial resistance to toxic metal ions—a review. Gene. 1996;179:9–19.

CAS  PubMed  Google Scholar 

Silver S. Genes for all metals – a bacterial view of the periodic table The Thom Award Lecture. J Ind Microbiol Biotechnol. 1996;1998(20):1–12.

Google Scholar 

Taylor DE, Hou Y, Turner RJ, Weiner JH. Location of a potassium tellurite resistance operon (tehAtehB) within the terminus of Escherichia coli K-12. J Bacteriol. 1994;176:2740–2.

CAS  PubMed  PubMed Central  Google Scholar 

Taylor DE, Rooker M, Keelan M, Ng L-K, Martin I, Perna NT, Burland NTV, Blattner FR. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol. 2002;184:4690–8.

CAS  PubMed  PubMed Central  Google Scholar 

Presser TS, Ohlendorf HM. Biogeochemical cycling of selenium in the San Joachin Valley, California, USA. Environ Manage. 1987;11:805–21.

CAS  Google Scholar 

Taylor A. Biochemistry of tellurium. Biol Trace Elem Res. 1996;55:231–9.

CAS  PubMed  Google Scholar 

Taylor DE. Bacterial tellurite resistance. Trends Microbiol. 1999;7:111–5.

CAS  PubMed  Google Scholar 

Zannoni D, Borsetti F, Harrison JJ, Turner RJ. The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol. 2008;53:1–72.

CAS  PubMed  Google Scholar 

Cappelletti M, Funari V, Gasparotto G, Dinelli E, Zannoni D. selenium in the environment. In Lens P and Pakshirajan K (editors) Environmental Technologies to Treat selenium Pollution: Principles and Engineering. Creative Commons Attribution Licence 2021; Chapter 1, p. 3–60

Presentato A, Turner RJ, Vasquez CC, Yurkov V, Zannoni D. Tellurite-dependent blackening of bacteria emerges from the dark ages. Environ Chem. 2019;1:266–88.

Google Scholar 

Park HS, Huh SH, Kim Y, Shim J, Lee SH, Park IS, Jung YK, Kim IY, Choi EJ. Selenite negatively regulates caspase-3 through a redox mechanism. J Biol Chem. 2000;275:8487–91.

CAS  PubMed  Google Scholar 

Gupta N, Porter TD. Inhibition of human squalene monooxygenase by selenium compounds. J Biochem Mol Toxicol. 2002;16:18–23.

CAS  PubMed  Google Scholar 

Chung YW, Kim TS, Lee SY, Lee SH, Choi Y, Kim N, Min B-M, Jeong D-W, Kim IY. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol Lett. 2006;160:143–50.

CAS  PubMed  Google Scholar 

Wagner-Recio M, Toews AD, Morell P. Tellurium blocks cholesterol synthesis by inhibiting squalene metabolism: preferential vulnerability to this metabolic block leads to peripheral nervous system demyelination. J Neurochem. 1991;57:1891–901.

CAS  PubMed  Google Scholar 

Wagner M, Toews AD, Morell P. Tellurite specifically affects squalene epoxidase: investigations examining the mechanism of tellurium-induced neuropathy. J Neurochem. 1995;64:2169–76.

CAS  PubMed  Google Scholar 

Deuticke B, Lütkemeier P, Poser B. Tellurite-induced damage of the erythrocyte membrane Manifestations and mechanisms. Biochim Biophys Acta. 1992;1109:97–107.

CAS  PubMed  Google Scholar 

Lohmeier-Vogel EM, Ung S, Turner RJ. In vivo 31P-Nuclear Magnetic Resonance investigation of tellurite toxicity in Escherichia coli. Appl Environ Microbiol. 2004;70:7342–7.

CAS  PubMed  PubMed Central  Google Scholar 

Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5:928–38.

CAS  Google Scholar 

Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.

CAS  PubMed  Google Scholar 

Turner RJ, Weiner JH, Taylor DE. Selenium metabolism in Escherichia coli. Biometals. 1998;11:223–7.

CAS  PubMed  Google Scholar 

Zhang Y, Frankenberger WT Jr. Removal of selenium from river water by a microbial community enhanced with Enterobacter taylorae in organic carbon coated sand columns. Sci Total Environ. 2005;346:280–5.

CAS  PubMed  Google Scholar 

Siddique T, Zhang Y, Okeke BC, Frankenberger WT Jr. Characterization of sediment bacteria involved in selenium reduction. Bioresour Technol. 2006;97:1041–9.

CAS  PubMed  Google Scholar 

Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol. 2004;70:52–60.

CAS  PubMed  PubMed Central  Google Scholar 

Csotonyi JT, Stackebrandt E, Yurkov VV. Anaerobic Respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl Environ Microbiol. 2006;72:4950–6.

CAS  PubMed  PubMed Central  Google Scholar 

Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol. 2007;73:2135–43.

CAS  PubMed  PubMed Central  Google Scholar 

Narasingarao P, Häggblom MM. Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol. 2007;73:3519–27.

CAS  PubMed  PubMed Central  Google Scholar 

Rauschenbach I, Narasingarao P, Häggblom MM. Desulfurispirillum indicum sp nov, a selenate- and selenite-respiring bacterium isolated from an estuarine canal. Int J Syst Evol Microbiol. 2011;61:654–8.

CAS  PubMed  Google Scholar 

Summers AO, Silver S. Microbial transformations of metals. Ann Rev Microbiol. 1978;32:637–72.

CAS  Google Scholar 

Zeng C, Ramos-Ruiz A, Field JA, Sierra-Alvarez R. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. J Environ Manage. 2015;154:78–85.

CAS  PubMed  Google Scholar 

Ramos-Ruiz A, Zeng C, Sierra-Alvarez R, Teixeira LH, Field JA. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe). Chemosphere. 2016;162:131–8.

CAS  PubMed  PubMed Central  Google Scholar 

Ramos-Ruiz A, Wilkening JV, Field JA, Sierra-Alvarez R. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. J Hazard Mater. 2017;336:57–64.

CAS  PubMed  PubMed Central  Google Scholar 

Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F. Selenocysteine: the 21st amino acid. Mol Microbiol. 1991;5:515–20.

PubMed  Google Scholar 

Nancharaiah YV, Lens PNL. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 2015;79:61–80.

CAS  PubMed  PubMed Central  Google Scholar 

Gonzalez-Gil G, Lens PNL, Saikaly PE. Selenite reduction by anaerobic microbial aggregates: microbial community structure, and proteins associated to the produced selenium spheres. Front Microbiol. 2016;7:571.

PubMed  PubMed Central  Google Scholar 

Maltman C, Piercey-Normore MD, Yurkov V. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings. Extremophiles. 2015;19:1013–9.

CAS  PubMed  Google Scholar 

Maltman C, Yurkov V. Extreme environments and high-level bacterial tellurite resistance. Microorganisms. 2019;7:601.

CAS  PubMed Central  Google Scholar 

Summers AO, Jacoby GA. Plasmid-determined resistance to tellurium compounds. J Bacteriol. 1997;129:276–81.

Google Scholar 

Taylor DE, Walter EG, Sherburne R, Bazett-Jones DP. Structure and location of tellurium deposited in Escherichia coli cells harboring tellurite-resistance plasmids. J Ultrastruct Mole Struct Res. 1988;99:18–26.

CAS  Google Scholar 

Moore MD, Kaplan S. Identification of intrinsic high-level resistance to rare earth oxides and oxyanions in members of the class proteobacteria: Characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol. 1992;174:1505–14.

CAS  PubMed  PubMed Central  Google Scholar 

Avazéri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Verméglio A. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology. 1997;143:1181–9.

PubMed  Google Scholar 

Bébien M, Chauvin J-P, Adriano J-M, Grosse S, Verméglio A. Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol. 2001;67:4440–7.

PubMed  PubMed Central  Google Scholar 

Hunter WJ, Manter DK. Reduction of selenite to elemental red selenium by Pseudomonas sp. Strain CA5. Curr Microbiol. 2009;58:493–8.

CAS  PubMed 

留言 (0)

沒有登入
gif