Implications of immune cells in oncolytic herpes simplex virotherapy for glioma

Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Supplement 5):v1–v100

PubMed  PubMed Central  Google Scholar 

Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

CAS  Google Scholar 

Otani Y, Ichikawa T, Kurozumi K et al (2019) Dynamic reorganization of microtubule and glioma invasion. Acta Med Okayama 73(4):285–297

CAS  PubMed  Google Scholar 

Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

CAS  PubMed  PubMed Central  Google Scholar 

Stupp R, Taillibert S, Kanner A et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318(23):2306–2316

CAS  PubMed  PubMed Central  Google Scholar 

Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 6(7):1003–1010

Google Scholar 

Friebel E, Kapolou K, Unger S et al (2020) Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181(7):1626-1642.e1620

CAS  PubMed  Google Scholar 

Goswami S, Walle T, Cornish AE et al (2020) Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med 26(1):39–46

CAS  PubMed  Google Scholar 

Hilf N, Kuttruff-Coqui S, Frenzel K et al (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245

CAS  PubMed  Google Scholar 

Keskin DB, Anandappa AJ, Sun J et al (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565(7738):234–239

CAS  PubMed  Google Scholar 

Maggs L, Cattaneo G, Dal AE et al (2021) CAR T cell-based immunotherapy for the treatment of glioblastoma. Front Neurosci 15:662064

PubMed  PubMed Central  Google Scholar 

Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157

CAS  PubMed  Google Scholar 

Desjardins A, Gromeier M, Herndon JE 2nd et al (2018) Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 379(2):150–161

CAS  PubMed  PubMed Central  Google Scholar 

Fares J, Ahmed AU, Ulasov IV et al (2021) Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol 22(8):1103–1114

CAS  PubMed  Google Scholar 

Kurozumi K, Fujii K, Shimazu Y et al (2020) Study protocol of a phase I/IIa clinical trial of Ad-SGE-REIC for treatment of recurrent malignant glioma. Future Oncol 16(6):151–159

CAS  PubMed  Google Scholar 

Kurozumi K, Koizumi S, Otani Y (2021) Gene therapy and viral therapy for malignant glioma. No Shinkei Geka 49(3):608–616

CAS  PubMed  Google Scholar 

Lang FF, Conrad C, Gomez-Manzano C et al (2018) Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427

CAS  PubMed  PubMed Central  Google Scholar 

Russell L, Swanner J, Jaime-Ramirez AC et al (2018) PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat Commun 9(1):5006

PubMed  PubMed Central  Google Scholar 

Martuza RL, Malick A, Markert JM et al (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856

CAS  PubMed  Google Scholar 

Hong B, Sahu U, Mullarkey MP et al (2022) Replication and spread of oncolytic herpes simplex virus in solid tumors. Viruses 14(1):118

CAS  PubMed  PubMed Central  Google Scholar 

Mineta T, Rabkin SD, Yazaki T et al (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943

CAS  PubMed  Google Scholar 

Zhou G, Roizman B (2006) Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA 103(14):5508–5513

CAS  PubMed  PubMed Central  Google Scholar 

Uchida H, Marzulli M, Nakano K et al (2013) Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 21(3):561–569

CAS  PubMed  Google Scholar 

Shibata T, Uchida H, Shiroyama T et al (2016) Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 23(6):479–488

CAS  PubMed  Google Scholar 

He B, Gross M, Roizman B (1997) The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94(3):843–848

CAS  PubMed  PubMed Central  Google Scholar 

Farassati F, Yang AD, Lee PW (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3(8):745–750

CAS  PubMed  Google Scholar 

MacLean AR, ul-Fareed M, Robertson L et al (1991) Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the “a” sequence. J Gen Virol 72(Pt 3):631–639

CAS  PubMed  Google Scholar 

Dufour F, Sasseville AM, Chabaud S et al (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 16(3):256–271

CAS  PubMed  Google Scholar 

Todo T, Martuza RL, Rabkin SD et al (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 98(11):6396–6401

CAS  PubMed  PubMed Central  Google Scholar 

Goldsmith K, Chen W, Johnson DC et al (1998) Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 187(3):341–348

CAS  PubMed  PubMed Central  Google Scholar 

Peters C, Paget M, Tshilenge KT et al (2018) Restriction of replication of oncolytic herpes simplex virus with a deletion of γ34.5 in glioblastoma stem-like cells. J Virol 92(15)

Kambara H, Okano H, Chiocca EA et al (2005) An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 65(7):2832–2839

CAS  PubMed  Google Scholar 

Hu JC, Coffin RS, Davis CJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747

CAS  PubMed  Google Scholar 

Kaufman HL, Ruby CE, Hughes T et al (2014) Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2:11

PubMed  PubMed Central  Google Scholar 

Cheema TA, Wakimoto H, Fecci PE et al (2013) Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA 110(29):12006–12011

CAS  PubMed  PubMed Central  Google Scholar 

Bolyard C, Meisen WH, Banasavadi-Siddegowda Y et al (2017) BAI1 orchestrates macrophage inflammatory response to HSV infection—implications for oncolytic viral therapy. Clin Cancer Res 23(7):1809–1819

CAS  PubMed  Google Scholar 

Fujii K, Kurozumi K, Ichikawa T et al (2013) The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus. Cancer Gene Ther 20(8):437–444

CAS  PubMed  PubMed Central  Google Scholar 

Hardcastle J, Kurozumi K, Dmitrieva N et al (2010) Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther 18(2):285–294

CAS  PubMed  Google Scholar 

Nair M, Khosla M, Otani Y et al (2020) Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers (Basel). 12(4):1040

CAS  PubMed Central  Google Scholar 

Tomita Y, Kurozumi K, Yoo JY et al (2019) Oncolytic herpes virus armed with vasculostatin in combination with bevacizumab abrogates glioma invasion via the CCN1 and AKT signaling pathways. Mol Cancer Ther 18(8):1418–1429

CAS  PubMed  Google Scholar 

Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

CAS  PubMed  PubMed Central  Google Scholar 

Rutledge WC, Kong J, Gao J et al (2013) Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 19(18):4951–4960

CAS  PubMed  Google Scholar 

Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874

CAS  PubMed  Google Scholar 

Markert JM, Razdan SN, Kuo HC et al (2014) A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22(5):1048–1055

CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif