Tissue engineering of the gastrointestinal tract: the historic path to translation

Beverly Greenwood-van Meerveld. Spring, Gastrointestinal Pharmacology; 2017.

Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain Axis. Physiol Rev. 2019;99(4):1877–2013.

Google Scholar 

Tait C, Sayuk GS. The brain-gut-Microbiotal Axis: a framework for understanding functional GI illness and their therapeutic interventions. Eur J Intern Med. 2021;84:1–9.

Google Scholar 

Jiang Y, Greenwood-Van Meerveld B, Johnson AC, Travagli RA. Role of estrogen and stress on the brain-gut axis. Am J Physiol Gastrointest Liver Physiol. 2019;317(2):G203–g9.

Google Scholar 

Molina-Torres G, Rodriguez-Arrastia M, Roman P, Sanchez-Labraca N, Cardona D. Stress and the gut microbiota-brain axis. Behav Pharmacol. 2019;30(2 and 3-Spec Issue):187–200.

Google Scholar 

Khlevner J, Park Y, Margolis KG. Brain-gut Axis: clinical implications. Gastroenterol Clin N Am. 2018;47(4):727–39.

Google Scholar 

Otterson MF, Sarr MG. Normal physiology of small intestinal motility. Surg Clin North Am. 1993;73(6):1173–92.

Google Scholar 

Corazziari E. Definition and epidemiology of functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol. 2004;18(4):613–31.

Google Scholar 

Burra P, Bizzaro D, Ciccocioppo R, Marra F, Piscaglia AC, Porretti L, et al. Therapeutic application of stem cells in gastroenterology: an up-date. World J Gastroenterol. 2011;17(34):3870–80.

Google Scholar 

Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell-based therapy in gastroenterology and hepatology. Minim Invasive Ther Allied Technol. 2008;17(2):100–18.

Google Scholar 

Hotta R, Natarajan D, Burns AJ, Thapar N. Stem cells for GI motility disorders. Curr Opin Pharmacol. 2011;11(6):617–23.

Google Scholar 

Stamp LA. Cell therapy for GI motility disorders: comparison of cell sources and proposed steps for treating Hirschsprung disease. Am J Physiol Gastrointest Liver Physiol. 2017;312(4):G348–G54.

Google Scholar 

Young HM. Neural stem cell therapy and gastrointestinal biology. Gastroenterology. 2005;129(6):2092–5.

Google Scholar 

Zakhem E, Raghavan S, Suhar RA, Bitar KN. Bioengineering and regeneration of gastrointestinal tissue: where are we now and what comes next? Expert Opin Biol Ther. 2019;19(6):527–37.

Google Scholar 

Mearin F, Malfertheiner P. Functional Gastrointestinal Disorders: Complex Treatments for Complex Pathophysiological Mechanisms. Digest Dis (Basel, Switzerland). 2017;35 Suppl 1(1):1–4.

Google Scholar 

Holtmann G, Shah A, Morrison M. Pathophysiology of functional gastrointestinal disorders: a holistic overview. Dig Dis. 2017;35(Suppl. 1):5–13.

Google Scholar 

Drossman DA. Functional GI disorders: what’s in a name. Gastroenterology. 2005;128(7):1771–2.

Google Scholar 

Christensen J. Pathophysiology of the irritable bowel syndrome. Lancet. 1992;340(8833):1444–7.

Google Scholar 

Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features, and Rome IV. Gastroenterology. 2016;150(6):1262–79.e2.

Google Scholar 

Fukudo S, Kuwano H, Miwa H. Management and pathophysiology of functional gastrointestinal disorders. Digestion. 2012;85(2):85–9.

Google Scholar 

Costa J, Ahluwalia A. Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front Bioeng Biotechnol. 2019;7:144.

Google Scholar 

Rocha FG, Whang EE. Intestinal tissue engineering: from regenerative medicine to model systems. J Surg Res. 2004;120(2):320–5.

Google Scholar 

Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil. 2012;24(1):7–19.

Google Scholar 

Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. Tissue engineering laboratory models of the small intestine. Tissue Eng B Rev. 2018;24(2):98–111.

Google Scholar 

Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatr. 2020;11:509681.

Google Scholar 

Camilleri M, Buéno L, Andresen V, De Ponti F, Choi M-G, Lembo A. Pharmacologic, Pharmacokinetic, and Pharmacogenomic Aspects of Functional Gastrointestinal Disorders. Gastroenterology. 2016;150(6):1319–31.e20.

Google Scholar 

Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology. 2002;122(7):2032–48.

Google Scholar 

Haier J, Schmidt F. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer; 2009. p. 773–9.

Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4(1):2.

Google Scholar 

Lorian V. Differences between in vitro and in vivo studies. Antimicrob Agents Chemother. 1988;32(10):1600–1.

Google Scholar 

Godbey WT, Atala A. In vitro systems for tissue engineering. Ann N Y Acad Sci. 2002;961:10–26.

Google Scholar 

Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23(1):3–9.

Google Scholar 

Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240(5):748–54.

Google Scholar 

Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156(2):205–12.

Google Scholar 

Barthel ER, Speer AL, Levin DE, Sala FG, Hou X, Torashima Y, et al. Tissue engineering of the intestine in a murine model. J Vis Exp. 2012;70:e4279.

Google Scholar 

Spurrier RG, Grikscheit TC. Tissue engineering the small intestine. Clin Gastroenterol Hepatol. 2013;11(4):354–8.

Google Scholar 

Patel KS, Thavamani A. Physiology, Peristalsis. StatPearls. Treasure Island: StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.

Google Scholar 

Rao JN, Wang JY. Integrated Systems Physiology: from Molecule to Function to Disease. Regulation of Gastrointestinal Mucosal Growth. San Rafael: Morgan & Claypool Life Sciences. Copyright © 2011 by Morgan & Claypool Life Sciences.; 2010.

Google Scholar 

Brasseur JG, Nicosia MA, Pal A, Miller LS. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling. World J Gastroenterol. 2007;13(9):1335–46.

Google Scholar 

Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol. 2012;9(11):633–45.

Google Scholar 

Xiu XL, Zheng LF, Liu XY, Fan YY, Zhu JX. Gastric smooth muscle cells manifest an abnormal phenotype in Parkinson's disease rats with gastric dysmotility. Cell Tissue Res. 2020;381(2):217–27.

Google Scholar 

Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L, et al. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell. 2019;179(1):90–105.e21.

Google Scholar 

Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17(6):338–51.

Google Scholar 

Furness JB. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil. 2008;20(Suppl 1):32–8.

Google Scholar 

Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94.

Google Scholar 

Wood JD, Alpers DH, Andrews PLR. Fundamentals of neurogastroenterology. Gut. 1999;45(suppl 2):II6–II16.

Google Scholar 

Foong D, Zhou J, Zarrouk A, Ho V, O’Connor MD. Understanding the biology of human interstitial cells of Cajal in gastrointestinal motility. Int J Mol Sci. 2020;21(12):4540.

Google Scholar 

Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907.

Google Scholar 

Viola MF, Boeckxstaens G. Intestinal resident macrophages: multitaskers of the gut. Neurogastroenterol Motil. 2020;32(8):e13843.

Google Scholar 

Grainger JR, Konkel JE, Zangerle-Murray T, Shaw TN. Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Arch. 2017;469(3–4):527–39.

Google Scholar 

Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: avenues for therapeutic intervention. Brain Res Bull. 2021;172:61–78.

Google Scholar 

De Winter BY, van den Wijngaard RM, de Jonge WJ. Intestinal mast cells in gut inflammation and motility disturbances. Biochim Biophys Acta. 2012;1822(1):66–73.

Google Scholar 

Ma H, Tao W, Zhu S. T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol Immunol. 2019;16(3):216–24.

Google Scholar 

Akiho H, Lovato P, Deng Y, Ceponis PJM, Blennerhassett P, Collins SM. Interleukin-4- and −13-induced hypercontractility of human intestinal muscle cells-implication for motility changes in Crohn's disease. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G609–G15.

Google Scholar 

Poggi A, Benelli R, Venè R, Costa D, Ferrari N, Tosetti F, et al. Human Gut-Associated Natural Killer Cells in Health and Disease. Front Immunol. 2019;10:961.

Google Scholar 

Ford CL, Wang Y, Morgan K, Boktor M, Jordan P, Castor TP, et al. Interferon-gamma depresses human intestinal smooth muscle cell contractility: relevance to inflammatory gut motility disturbances. Life Sci. 2019;222:69–77.

Google Scholar 

Reardon C, Murray K, Lomax AE. Neuroimmune communication in health and disease. Physiol Rev. 2018;98(4):2287–316.

Google Scholar 

Cencic A, Langerholc T. Functional cell models of the gut and their applications in food microbiology--a review. Int J Food Microbiol. 2010;141(Suppl 1):S4–14.

Google Scholar 

Clevers H, Conder RK, Li VSW, Lutolf MP, Vallier L, Chan S, et al. Tissue-engineering the intestine: the trials before the trials. Cell Stem Cell. 2019;24(6):855–9.

Google Scholar 

Keller J, Bassotti G, Clarke J, Dinning P, Fox M, Grover M, et al. Advances in the diagnosis and classification of gastric and intestinal motility disorders. Nat Rev Gastroenterol Hepatol. 2018;15(5):291–308.

Google Scholar 

Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(3):736–49.

Google Scholar 

Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990;7(9):902–10.

Google Scholar 

Simon-Assmann P, Turck N, Sidhoum-Jenny M, Gradwohl G, Kedinger M. In vitro models of intestinal epithelial cell differentiation. Cell Biol Toxicol. 2007;23(4):241–56.

Google Scholar 

Anitha M, Joseph I, Ding X, Torre ER, Sawchuk MA, Mwangi S, et al. Characterization of fetal and postnatal enteric neuronal cell lines with improvement in intestinal neural function. Gastroenterology. 2008;134(5):1424–35.

Google Scholar 

Raghavan S, Gilmont RR, Miyasaka EA, Somara S, Srinivasan S, Teitelbaum DH, et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology. 2011;141(1):310–9.

Google Scholar 

Holland-Cunz S, Bainczyk S, Hagl C, Wink E, Wedel T, Back W, et al. Three-dimensional co-culture model of enterocytes and primary enteric neuronal tissue. Pediatr Surg Int. 2004;20(4):233–7.

Google Scholar 

Zhang Y, Hu W. Mouse enteric neuronal cell culture. In: Amini S, White MK, editors. Neuronal cell culture: methods and protocols. Totowa: Humana Press; 2013. p. 55–63.

Google Scholar 

Brun P, Akbarali HI. Culture of neurons and smooth muscle cells from the myenteric plexus of adult mice. In: Skaper SD, editor. Neurotrophic factors: methods and protocols. New York: Springer New York; 2018. p. 119–25.

Google Scholar 

Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, et al. Expansion and Differentiation of Neural Progenitors Derived From the Human Adult Enteric Nervous System. Gastroenterology. 2009;137(6):2063–73.e4.

Google Scholar 

Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci. 2020;7:33.

Google Scholar 

Chen Y, Zhou W, Roh T, Estes MK, Kaplan DL. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS One. 2017;12(11):e0187880.

Google Scholar 

Tokita Y, Akiho H, Nakamura K, Ihara E, Yamamoto M. Contraction of gut smooth muscle cells assessed by fluorescence imaging. J Pharmacol Sci. 2015;127(3):344–51.

Google Scholar 

Batista Lobo S, Denyer M, Britland S, Javid FA. Development of an intestinal cell culture model to obtain smooth muscle cells and myenteric neurones. J Anat. 2007;211(6):819–29.

留言 (0)

沒有登入
gif